Analisis Kinerja Intrusion Detection System Berbasis Algoritma Random Forest Menggunakan Dataset Unbalanced Honeynet BSSN
Teknologi dan sistem informasi yang semakin berkembang menjadikan ancaman siber juga semakin meningkat. Pada tahun 2023, Indonesia menduduki peringkat pertama sebagai negara dengan sumber serangan tertinggi. Untuk mengatasi permasalahan tersebut, Intrusion Detection System (IDS) dijadikan solusi di...
Saved in:
| Main Authors: | Kuni Inayah, Kalamullah Ramli |
|---|---|
| Format: | Article |
| Language: | Indonesian |
| Published: |
University of Brawijaya
2024-08-01
|
| Series: | Jurnal Teknologi Informasi dan Ilmu Komputer |
| Subjects: | |
| Online Access: | https://jtiik.ub.ac.id/index.php/jtiik/article/view/8911 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Enhancing Security in Smart Robot Digital Twins Through Intrusion Detection Systems
by: Bogdan-Valentin Vasilica, et al.
Published: (2025-04-01) -
Highly accurate anomaly based intrusion detection through integration of the local outlier factor and convolutional neural network
by: Rahimullah Rabih, et al.
Published: (2025-07-01) -
RF-RFE-SMOTE: A DoS And DDoS Attack Detection Framework
by: Nora Rashid Najam, et al.
Published: (2023-10-01) -
Design and Analysis of an Effective Architecture for Machine Learning Based Intrusion Detection Systems
by: Noora Alromaihi, et al.
Published: (2025-04-01) -
Building a large, realistic and labeled HTTP URI dataset for anomaly-based intrusion detection systems: Biblio-US17
by: Jesús Díaz-Verdejo, et al.
Published: (2025-06-01)