The Power of Words from the 2024 United States Presidential Debates: A Natural Language Processing Approach

This study analyzes the linguistic patterns and rhetorical strategies employed in the 2024 U.S. presidential debates from the exchanges between Donald Trump, Joe Biden, and Kamala Harris. This paper examines debate transcripts to find underlying themes and communication styles using Natural Language...

Full description

Saved in:
Bibliographic Details
Main Authors: Ana Lorena Jiménez-Preciado, José Álvarez-García, Salvador Cruz-Aké, Francisco Venegas-Martínez
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/16/1/2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588333286424576
author Ana Lorena Jiménez-Preciado
José Álvarez-García
Salvador Cruz-Aké
Francisco Venegas-Martínez
author_facet Ana Lorena Jiménez-Preciado
José Álvarez-García
Salvador Cruz-Aké
Francisco Venegas-Martínez
author_sort Ana Lorena Jiménez-Preciado
collection DOAJ
description This study analyzes the linguistic patterns and rhetorical strategies employed in the 2024 U.S. presidential debates from the exchanges between Donald Trump, Joe Biden, and Kamala Harris. This paper examines debate transcripts to find underlying themes and communication styles using Natural Language Processing (NLP) advanced techniques, including an n-gram analysis, sentiment analysis, and lexical diversity measurements. The methodology combines a quantitative text analysis with qualitative interpretation through the Jaccard similarity coefficient, the Type–Token Ratio, and the Measure of Textual Lexical Diversity. The empirical results reveal distinct linguistic profiles for each candidate: Trump consistently employed emotionally charged language with high sentiment volatility, while Biden and Harris demonstrated more measured approaches with higher lexical diversity. Finally, this research contributes to the understanding of political discourse in high-stakes debates through NLP and can offer information on the evolution of the communication strategies of the presidential candidates of any country with this regime.
format Article
id doaj-art-342cb9de2b8043dca83a958c6cf2643b
institution Kabale University
issn 2078-2489
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Information
spelling doaj-art-342cb9de2b8043dca83a958c6cf2643b2025-01-24T13:35:05ZengMDPI AGInformation2078-24892024-12-01161210.3390/info16010002The Power of Words from the 2024 United States Presidential Debates: A Natural Language Processing ApproachAna Lorena Jiménez-Preciado0José Álvarez-García1Salvador Cruz-Aké2Francisco Venegas-Martínez3Escuela Superior de Economía, Instituto Politécnico Nacional, Av. Plan de Agua Prieta 66, Miguel Hidalgo, Mexico City 11350, MexicoDepartamento de Economía Financiera y Contabilidad, Instituto Universitario de Investigación para el Desarrollo Territorial Sostenible (INTERRA), Facultad de Empresa Finanzas y Turismo, Universidad de Extremadura, Avda. de la Universidad, n° 47, 10071 Cáceres, SpainEscuela Superior de Economía, Instituto Politécnico Nacional, Av. Plan de Agua Prieta 66, Miguel Hidalgo, Mexico City 11350, MexicoEscuela Superior de Economía, Instituto Politécnico Nacional, Av. Plan de Agua Prieta 66, Miguel Hidalgo, Mexico City 11350, MexicoThis study analyzes the linguistic patterns and rhetorical strategies employed in the 2024 U.S. presidential debates from the exchanges between Donald Trump, Joe Biden, and Kamala Harris. This paper examines debate transcripts to find underlying themes and communication styles using Natural Language Processing (NLP) advanced techniques, including an n-gram analysis, sentiment analysis, and lexical diversity measurements. The methodology combines a quantitative text analysis with qualitative interpretation through the Jaccard similarity coefficient, the Type–Token Ratio, and the Measure of Textual Lexical Diversity. The empirical results reveal distinct linguistic profiles for each candidate: Trump consistently employed emotionally charged language with high sentiment volatility, while Biden and Harris demonstrated more measured approaches with higher lexical diversity. Finally, this research contributes to the understanding of political discourse in high-stakes debates through NLP and can offer information on the evolution of the communication strategies of the presidential candidates of any country with this regime.https://www.mdpi.com/2078-2489/16/1/2presidential debatesnatural language processingsentiment analysisJaccard similaritytype–token ratiomeasure of textual lexical diversity
spellingShingle Ana Lorena Jiménez-Preciado
José Álvarez-García
Salvador Cruz-Aké
Francisco Venegas-Martínez
The Power of Words from the 2024 United States Presidential Debates: A Natural Language Processing Approach
Information
presidential debates
natural language processing
sentiment analysis
Jaccard similarity
type–token ratio
measure of textual lexical diversity
title The Power of Words from the 2024 United States Presidential Debates: A Natural Language Processing Approach
title_full The Power of Words from the 2024 United States Presidential Debates: A Natural Language Processing Approach
title_fullStr The Power of Words from the 2024 United States Presidential Debates: A Natural Language Processing Approach
title_full_unstemmed The Power of Words from the 2024 United States Presidential Debates: A Natural Language Processing Approach
title_short The Power of Words from the 2024 United States Presidential Debates: A Natural Language Processing Approach
title_sort power of words from the 2024 united states presidential debates a natural language processing approach
topic presidential debates
natural language processing
sentiment analysis
Jaccard similarity
type–token ratio
measure of textual lexical diversity
url https://www.mdpi.com/2078-2489/16/1/2
work_keys_str_mv AT analorenajimenezpreciado thepowerofwordsfromthe2024unitedstatespresidentialdebatesanaturallanguageprocessingapproach
AT josealvarezgarcia thepowerofwordsfromthe2024unitedstatespresidentialdebatesanaturallanguageprocessingapproach
AT salvadorcruzake thepowerofwordsfromthe2024unitedstatespresidentialdebatesanaturallanguageprocessingapproach
AT franciscovenegasmartinez thepowerofwordsfromthe2024unitedstatespresidentialdebatesanaturallanguageprocessingapproach
AT analorenajimenezpreciado powerofwordsfromthe2024unitedstatespresidentialdebatesanaturallanguageprocessingapproach
AT josealvarezgarcia powerofwordsfromthe2024unitedstatespresidentialdebatesanaturallanguageprocessingapproach
AT salvadorcruzake powerofwordsfromthe2024unitedstatespresidentialdebatesanaturallanguageprocessingapproach
AT franciscovenegasmartinez powerofwordsfromthe2024unitedstatespresidentialdebatesanaturallanguageprocessingapproach