Inverse Problem for a Curved Quantum Guide
We consider the Dirichlet Laplacian operator −Δ on a curved quantum guide in ℝ n(n=2,3) with an asymptotically straight reference curve. We give uniqueness results for the inverse problem associated to the reconstruction of the curvature by using either observations of spectral data or a boot-strap...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2012/651390 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832559888020013056 |
---|---|
author | Laure Cardoulis Michel Cristofol |
author_facet | Laure Cardoulis Michel Cristofol |
author_sort | Laure Cardoulis |
collection | DOAJ |
description | We consider the Dirichlet Laplacian operator −Δ on a curved quantum guide in ℝ n(n=2,3) with an asymptotically straight reference curve. We give uniqueness results for the inverse problem associated to the reconstruction of the curvature by using either observations of spectral data or a boot-strapping method. |
format | Article |
id | doaj-art-341007c6d18444d096b8643be3fd5c52 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2012-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-341007c6d18444d096b8643be3fd5c522025-02-03T01:28:57ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/651390651390Inverse Problem for a Curved Quantum GuideLaure Cardoulis0Michel Cristofol1UT1 Ceremath, Université de Toulouse, 21 Allées de Brienne, 31042 Toulouse Cedex 9, FranceLATP, Université d’Aix-Marseille, UMR 7353, 39 rue Joliot Curie, 13453 Marseille Cedex 13, FranceWe consider the Dirichlet Laplacian operator −Δ on a curved quantum guide in ℝ n(n=2,3) with an asymptotically straight reference curve. We give uniqueness results for the inverse problem associated to the reconstruction of the curvature by using either observations of spectral data or a boot-strapping method.http://dx.doi.org/10.1155/2012/651390 |
spellingShingle | Laure Cardoulis Michel Cristofol Inverse Problem for a Curved Quantum Guide International Journal of Mathematics and Mathematical Sciences |
title | Inverse Problem for a Curved Quantum Guide |
title_full | Inverse Problem for a Curved Quantum Guide |
title_fullStr | Inverse Problem for a Curved Quantum Guide |
title_full_unstemmed | Inverse Problem for a Curved Quantum Guide |
title_short | Inverse Problem for a Curved Quantum Guide |
title_sort | inverse problem for a curved quantum guide |
url | http://dx.doi.org/10.1155/2012/651390 |
work_keys_str_mv | AT laurecardoulis inverseproblemforacurvedquantumguide AT michelcristofol inverseproblemforacurvedquantumguide |