Enhancing Abstractive Multi-Document Summarization with Bert2Bert Model for Indonesian Language
This study investigates the effectiveness of the proposed Bert2Bert and Bert2Bert+Xtreme models in improving abstract multi-document summarization for the Indonesian language. This study uses the transformer model as a basis for developing the proposed Bert2Bert and Bert2Bert+Xtreme models. The resu...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Islam Negeri Sunan Kalijaga Yogyakarta
2025-01-01
|
Series: | JISKA (Jurnal Informatika Sunan Kalijaga) |
Subjects: | |
Online Access: | https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/4736 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the effectiveness of the proposed Bert2Bert and Bert2Bert+Xtreme models in improving abstract multi-document summarization for the Indonesian language. This study uses the transformer model as a basis for developing the proposed Bert2Bert and Bert2Bert+Xtreme models. The results of the model evaluation with the Liputan6 dataset using ROUGE-1, ROUGE-2, ROUGE-L, and BERTScore show that the proposed models have slight improvements over previous research models with Bert2Bert being better than Bert2Bert+Xtreme. Despite the challenges posed by limited reference summarization for Indonesian documents, content-based analysis using readability metrics, including FKGL, GFI, and Dwiyanto Djoko Pranowo revealed that the summaries generated by Bert2Bert and Bert2Bert+Xtreme are at a moderate readability level, which means they are suitable for adult readers and in line with the target audience of the news portal. |
---|---|
ISSN: | 2527-5836 2528-0074 |