A Note on Some Bounds of the α-Estrada Index of Graphs

Let G be a simple graph with n vertices. Let A~αG=αDG+1−αAG, where 0≤α≤1 and AG and DG denote the adjacency matrix and degree matrix of G, respectively. EEαG=∑i=1neλi is called the α-Estrada index of G, where λ1,⋯,λn denote the eigenvalues of A~αG. In this paper, the upper and lower bounds for EEαG...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang Yang, Lizhu Sun, Changjiang Bu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2020/3972789
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550475608621056
author Yang Yang
Lizhu Sun
Changjiang Bu
author_facet Yang Yang
Lizhu Sun
Changjiang Bu
author_sort Yang Yang
collection DOAJ
description Let G be a simple graph with n vertices. Let A~αG=αDG+1−αAG, where 0≤α≤1 and AG and DG denote the adjacency matrix and degree matrix of G, respectively. EEαG=∑i=1neλi is called the α-Estrada index of G, where λ1,⋯,λn denote the eigenvalues of A~αG. In this paper, the upper and lower bounds for EEαG are given. Moreover, some relations between the α-Estrada index and α-energy are established.
format Article
id doaj-art-32637769787a432788087bc24ba1bf9e
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-32637769787a432788087bc24ba1bf9e2025-02-03T06:06:42ZengWileyAdvances in Mathematical Physics1687-91201687-91392020-01-01202010.1155/2020/39727893972789A Note on Some Bounds of the α-Estrada Index of GraphsYang Yang0Lizhu Sun1Changjiang Bu2College of Automation, Harbin Engineering University, Harbin 150001, ChinaCollege of Mathematical Sciences, Harbin Engineering University, Harbin 150001, ChinaCollege of Automation, Harbin Engineering University, Harbin 150001, ChinaLet G be a simple graph with n vertices. Let A~αG=αDG+1−αAG, where 0≤α≤1 and AG and DG denote the adjacency matrix and degree matrix of G, respectively. EEαG=∑i=1neλi is called the α-Estrada index of G, where λ1,⋯,λn denote the eigenvalues of A~αG. In this paper, the upper and lower bounds for EEαG are given. Moreover, some relations between the α-Estrada index and α-energy are established.http://dx.doi.org/10.1155/2020/3972789
spellingShingle Yang Yang
Lizhu Sun
Changjiang Bu
A Note on Some Bounds of the α-Estrada Index of Graphs
Advances in Mathematical Physics
title A Note on Some Bounds of the α-Estrada Index of Graphs
title_full A Note on Some Bounds of the α-Estrada Index of Graphs
title_fullStr A Note on Some Bounds of the α-Estrada Index of Graphs
title_full_unstemmed A Note on Some Bounds of the α-Estrada Index of Graphs
title_short A Note on Some Bounds of the α-Estrada Index of Graphs
title_sort note on some bounds of the α estrada index of graphs
url http://dx.doi.org/10.1155/2020/3972789
work_keys_str_mv AT yangyang anoteonsomeboundsoftheaestradaindexofgraphs
AT lizhusun anoteonsomeboundsoftheaestradaindexofgraphs
AT changjiangbu anoteonsomeboundsoftheaestradaindexofgraphs
AT yangyang noteonsomeboundsoftheaestradaindexofgraphs
AT lizhusun noteonsomeboundsoftheaestradaindexofgraphs
AT changjiangbu noteonsomeboundsoftheaestradaindexofgraphs