APC orchestrates microtubule dynamics by acting as a positive regulator of KIF2A and a negative regulator of CLASPs

Tumor suppressor protein Adenomatous polyposis coli protein (APC) is an EB-binding and microtubule (MT) plus end-tracking protein; however, how exactly APC regulates MT dynamics remains elusive. Here, we show that in LLC-PK1 cells, APC and KIF2A, an MT depolymerase, form a complex clustering at the...

Full description

Saved in:
Bibliographic Details
Main Authors: Yong Wang, Xinping Liu, Zheng Liu, Shasha Hua, Kai Jiang
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Cell Insight
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772892724000658
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tumor suppressor protein Adenomatous polyposis coli protein (APC) is an EB-binding and microtubule (MT) plus end-tracking protein; however, how exactly APC regulates MT dynamics remains elusive. Here, we show that in LLC-PK1 cells, APC and KIF2A, an MT depolymerase, form a complex clustering at the cell edge and destabilize MTs at the MT plus ends. Further biochemical characterization and mutational analysis reveal key residues for the APC-KIF2A interaction. In addition, APC counteracts the major MT-stabilizer CLASPs at MT plus ends and promotes directional cell migration via modulating cell adhesion force. Reconstitution experiments demonstrate that APC potentiates KIF2A-induced MT catastrophes and antagonizes the stabilizing effect of CLASP2 in vitro. In summary, APC functions as a positive regulator of MT-destabilizer and a negative regulator of MT-stabilizer to orchestrate MT dynamics.
ISSN:2772-8927