Evaluation of a Comprehensive Approach for the Development of the Field E* Master Curve Using NDT Data

Non-destructive testing (NDT) systems are essential tools and are widely used for assessing the condition and structural integrity of pavement structures without causing any damage. They are cost-effective, provide comprehensive data, and are time efficient. The bearing capacity and structural condi...

Full description

Saved in:
Bibliographic Details
Main Authors: Konstantina Georgouli, Christina Plati, Andreas Loizos
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:NDT
Subjects:
Online Access:https://www.mdpi.com/2813-477X/2/4/29
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-destructive testing (NDT) systems are essential tools and are widely used for assessing the condition and structural integrity of pavement structures without causing any damage. They are cost-effective, provide comprehensive data, and are time efficient. The bearing capacity and structural condition of a flexible pavement depends on several interrelated factors, with asphalt layers stiffness being dominant. Since asphalt mix is a viscoelastic material, its performance can be fully captured by the dynamic modulus master curve. However, in terms of evaluating an in-service pavement, although a dynamic load is applied and the time history of deflections is recorded during testing of FWD, only the peak deflection is considered in the analysis. Therefore, the modulus of stiffness estimated by backcalculation is the modulus of elasticity. While several methods have been introduced for the determination of the field dynamic modulus master curve, the MEPDG approach provides significant advantages in terms of transparency and robustness. This study focuses on evaluating the methodology’s accuracy through an experimental study. The data analysis and validation process showed that routine measurements with the FWD and GPR, within the framework of a pavement monitoring system, can provide valuable input parameters for the evaluation of in-service pavements.
ISSN:2813-477X