Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.

<h4>Background</h4>Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI...

Full description

Saved in:
Bibliographic Details
Main Authors: Leland S Hu, Shuluo Ning, Jennifer M Eschbacher, Nathan Gaw, Amylou C Dueck, Kris A Smith, Peter Nakaji, Jonathan Plasencia, Sara Ranjbar, Stephen J Price, Nhan Tran, Joseph Loftus, Robert Jenkins, Brian P O'Neill, William Elmquist, Leslie C Baxter, Fei Gao, David Frakes, John P Karis, Christine Zwart, Kristin R Swanson, Jann Sarkaria, Teresa Wu, J Ross Mitchell, Jing Li
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0141506
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849331955547504640
author Leland S Hu
Shuluo Ning
Jennifer M Eschbacher
Nathan Gaw
Amylou C Dueck
Kris A Smith
Peter Nakaji
Jonathan Plasencia
Sara Ranjbar
Stephen J Price
Nhan Tran
Joseph Loftus
Robert Jenkins
Brian P O'Neill
William Elmquist
Leslie C Baxter
Fei Gao
David Frakes
John P Karis
Christine Zwart
Kristin R Swanson
Jann Sarkaria
Teresa Wu
J Ross Mitchell
Jing Li
author_facet Leland S Hu
Shuluo Ning
Jennifer M Eschbacher
Nathan Gaw
Amylou C Dueck
Kris A Smith
Peter Nakaji
Jonathan Plasencia
Sara Ranjbar
Stephen J Price
Nhan Tran
Joseph Loftus
Robert Jenkins
Brian P O'Neill
William Elmquist
Leslie C Baxter
Fei Gao
David Frakes
John P Karis
Christine Zwart
Kristin R Swanson
Jann Sarkaria
Teresa Wu
J Ross Mitchell
Jing Li
author_sort Leland S Hu
collection DOAJ
description <h4>Background</h4>Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM.<h4>Methods</h4>We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set.<h4>Results</h4>We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients).<h4>Conclusion</h4>Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.
format Article
id doaj-art-320cfd61fa854bedb91d16d8e4075cd4
institution Kabale University
issn 1932-6203
language English
publishDate 2015-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-320cfd61fa854bedb91d16d8e4075cd42025-08-20T03:46:21ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-011011e014150610.1371/journal.pone.0141506Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.Leland S HuShuluo NingJennifer M EschbacherNathan GawAmylou C DueckKris A SmithPeter NakajiJonathan PlasenciaSara RanjbarStephen J PriceNhan TranJoseph LoftusRobert JenkinsBrian P O'NeillWilliam ElmquistLeslie C BaxterFei GaoDavid FrakesJohn P KarisChristine ZwartKristin R SwansonJann SarkariaTeresa WuJ Ross MitchellJing Li<h4>Background</h4>Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM.<h4>Methods</h4>We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set.<h4>Results</h4>We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients).<h4>Conclusion</h4>Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.https://doi.org/10.1371/journal.pone.0141506
spellingShingle Leland S Hu
Shuluo Ning
Jennifer M Eschbacher
Nathan Gaw
Amylou C Dueck
Kris A Smith
Peter Nakaji
Jonathan Plasencia
Sara Ranjbar
Stephen J Price
Nhan Tran
Joseph Loftus
Robert Jenkins
Brian P O'Neill
William Elmquist
Leslie C Baxter
Fei Gao
David Frakes
John P Karis
Christine Zwart
Kristin R Swanson
Jann Sarkaria
Teresa Wu
J Ross Mitchell
Jing Li
Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.
PLoS ONE
title Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.
title_full Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.
title_fullStr Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.
title_full_unstemmed Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.
title_short Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.
title_sort multi parametric mri and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma
url https://doi.org/10.1371/journal.pone.0141506
work_keys_str_mv AT lelandshu multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT shuluoning multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT jennifermeschbacher multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT nathangaw multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT amyloucdueck multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT krisasmith multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT peternakaji multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT jonathanplasencia multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT sararanjbar multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT stephenjprice multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT nhantran multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT josephloftus multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT robertjenkins multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT brianponeill multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT williamelmquist multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT lesliecbaxter multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT feigao multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT davidfrakes multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT johnpkaris multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT christinezwart multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT kristinrswanson multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT jannsarkaria multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT teresawu multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT jrossmitchell multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma
AT jingli multiparametricmriandtextureanalysistovisualizespatialhistologicheterogeneityandtumorextentinglioblastoma