A Note on Best Approximation in 0-Complete Partial Metric Spaces
We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consi...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/979170 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832545493312339968 |
---|---|
author | Marta Demma Mohamed Jleli Bessem Samet Calogero Vetro |
author_facet | Marta Demma Mohamed Jleli Bessem Samet Calogero Vetro |
author_sort | Marta Demma |
collection | DOAJ |
description | We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact. |
format | Article |
id | doaj-art-31f532ec8baa437eaf4dbc6a7cae2d51 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-31f532ec8baa437eaf4dbc6a7cae2d512025-02-03T07:25:29ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/979170979170A Note on Best Approximation in 0-Complete Partial Metric SpacesMarta Demma0Mohamed Jleli1Bessem Samet2Calogero Vetro3Università degli Studi di Palermo, Dipartimento di Matematica e Informatica, Via Archirafi 34, 90123 Palermo, ItalyDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaUniversità degli Studi di Palermo, Dipartimento di Matematica e Informatica, Via Archirafi 34, 90123 Palermo, ItalyWe study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.http://dx.doi.org/10.1155/2014/979170 |
spellingShingle | Marta Demma Mohamed Jleli Bessem Samet Calogero Vetro A Note on Best Approximation in 0-Complete Partial Metric Spaces Abstract and Applied Analysis |
title | A Note on Best Approximation in 0-Complete Partial Metric Spaces |
title_full | A Note on Best Approximation in 0-Complete Partial Metric Spaces |
title_fullStr | A Note on Best Approximation in 0-Complete Partial Metric Spaces |
title_full_unstemmed | A Note on Best Approximation in 0-Complete Partial Metric Spaces |
title_short | A Note on Best Approximation in 0-Complete Partial Metric Spaces |
title_sort | note on best approximation in 0 complete partial metric spaces |
url | http://dx.doi.org/10.1155/2014/979170 |
work_keys_str_mv | AT martademma anoteonbestapproximationin0completepartialmetricspaces AT mohamedjleli anoteonbestapproximationin0completepartialmetricspaces AT bessemsamet anoteonbestapproximationin0completepartialmetricspaces AT calogerovetro anoteonbestapproximationin0completepartialmetricspaces AT martademma noteonbestapproximationin0completepartialmetricspaces AT mohamedjleli noteonbestapproximationin0completepartialmetricspaces AT bessemsamet noteonbestapproximationin0completepartialmetricspaces AT calogerovetro noteonbestapproximationin0completepartialmetricspaces |