A Note on Best Approximation in 0-Complete Partial Metric Spaces

We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consi...

Full description

Saved in:
Bibliographic Details
Main Authors: Marta Demma, Mohamed Jleli, Bessem Samet, Calogero Vetro
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/979170
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545493312339968
author Marta Demma
Mohamed Jleli
Bessem Samet
Calogero Vetro
author_facet Marta Demma
Mohamed Jleli
Bessem Samet
Calogero Vetro
author_sort Marta Demma
collection DOAJ
description We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.
format Article
id doaj-art-31f532ec8baa437eaf4dbc6a7cae2d51
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-31f532ec8baa437eaf4dbc6a7cae2d512025-02-03T07:25:29ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/979170979170A Note on Best Approximation in 0-Complete Partial Metric SpacesMarta Demma0Mohamed Jleli1Bessem Samet2Calogero Vetro3Università degli Studi di Palermo, Dipartimento di Matematica e Informatica, Via Archirafi 34, 90123 Palermo, ItalyDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaUniversità degli Studi di Palermo, Dipartimento di Matematica e Informatica, Via Archirafi 34, 90123 Palermo, ItalyWe study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.http://dx.doi.org/10.1155/2014/979170
spellingShingle Marta Demma
Mohamed Jleli
Bessem Samet
Calogero Vetro
A Note on Best Approximation in 0-Complete Partial Metric Spaces
Abstract and Applied Analysis
title A Note on Best Approximation in 0-Complete Partial Metric Spaces
title_full A Note on Best Approximation in 0-Complete Partial Metric Spaces
title_fullStr A Note on Best Approximation in 0-Complete Partial Metric Spaces
title_full_unstemmed A Note on Best Approximation in 0-Complete Partial Metric Spaces
title_short A Note on Best Approximation in 0-Complete Partial Metric Spaces
title_sort note on best approximation in 0 complete partial metric spaces
url http://dx.doi.org/10.1155/2014/979170
work_keys_str_mv AT martademma anoteonbestapproximationin0completepartialmetricspaces
AT mohamedjleli anoteonbestapproximationin0completepartialmetricspaces
AT bessemsamet anoteonbestapproximationin0completepartialmetricspaces
AT calogerovetro anoteonbestapproximationin0completepartialmetricspaces
AT martademma noteonbestapproximationin0completepartialmetricspaces
AT mohamedjleli noteonbestapproximationin0completepartialmetricspaces
AT bessemsamet noteonbestapproximationin0completepartialmetricspaces
AT calogerovetro noteonbestapproximationin0completepartialmetricspaces