Exhaled volatile organic compounds in the detection of colorectal cancer

There is an apparent need for novel non-invasive colorectal cancer (CRC) screening tests that are more acceptable to patients and can reliably detect CRC or reduce the number of unnecessary colonoscopies performed in cancer-free patients. An emerging number of studies demonstrate the potential value...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniah Alsaadi, Nicolle Clements, Natiya Gabuniya, Nader Francis, Manish Chand
Format: Article
Language:English
Published: IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund 2024-05-01
Series:EXCLI Journal : Experimental and Clinical Sciences
Subjects:
Online Access:https://www.excli.de/excli/article/view/7042
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is an apparent need for novel non-invasive colorectal cancer (CRC) screening tests that are more acceptable to patients and can reliably detect CRC or reduce the number of unnecessary colonoscopies performed in cancer-free patients. An emerging number of studies demonstrate the potential value of exhaled volatile organic compounds (VOCs) as a diagnostic and triaging test for CRC. A systematic appraisal and meta-analysis of the published evidence was done to determine whether exhaled VOCs can be used in the detection and screening of CRC. Nine electronic databases were searched from inception of the databases until August 2020. Quantitative and descriptive data of CRC patients and healthy control (HC) participants who underwent VOCs breath analysis was extracted. In addition, where possible, sampling methods, analytical platforms, processors, and specific breath biomarkers found in each study were recorded. Fourteen articles were included in the systematic review with 491 colorectal patients and 754 HC participants (n=1245). Sub-group meta-analysis was conducted on nine of those articles and the pooled sensitivity was estimated to be 0.89 (95 % CI = 0.80-0.99) whereas specificity was 0.83 (95 % CI = 0.74-0.92). Heterogeneity of pooled sensitivity and specificity was estimated as I2=11.11 %. Although this study was limited by small sample size and different analytical platforms, the proposed future framework resolves such limitations and standardizes future research. It is reasonable to deduce that VOCs breath analysis is certainly a field of research that can progress to replace traditional methods within the framework of CRC screening and diagnosis.
ISSN:1611-2156