Text mining of hypertension researches in the west Asia region: a 12-year trend analysis

More than half of the world population lives in Asia and hypertension (HTN) is the most prevalent risk factor found in Asia. There are numerous articles published about HTN in Eastern Mediterranean Region (EMRO) and artificial intelligence (AI) methods can analyze articles and extract top trends in...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammad Rezapour, Mohsen Yazdinejad, Faezeh Rajabi Kouchi, Masoomeh Habibi Baghi, Zahra Khorrami, Morteza Khavanin Zadeh, Elmira Pourbaghi, Hassan Rezapour
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Renal Failure
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/0886022X.2024.2337285
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:More than half of the world population lives in Asia and hypertension (HTN) is the most prevalent risk factor found in Asia. There are numerous articles published about HTN in Eastern Mediterranean Region (EMRO) and artificial intelligence (AI) methods can analyze articles and extract top trends in each country. Present analysis uses Latent Dirichlet allocation (LDA) as an algorithm of topic modeling (TM) in text mining, to obtain subjective topic-word distribution from the 2790 studies over the EMRO. The period of checked studied is last 12 years and results of LDA analyses show that HTN researches published in EMRO discuss on changes in BP and the factors affecting it. Among the countries in the region, most of these articles are related to I.R Iran and Egypt, which have an increasing trend from 2017 to 2018 and reached the highest level in 2021. Meanwhile, Iraq and Lebanon have been conducting research since 2010. The EMRO word cloud illustrates ‘BMI’, ‘mortality’, ‘age’, and ‘meal’, which represent important indicators, dangerous outcomes of high BP, and gender of HTN patients in EMRO, respectively.
ISSN:0886-022X
1525-6049