Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer

Abstract Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy...

Full description

Saved in:
Bibliographic Details
Main Authors: Nicolas Captier, Marvin Lerousseau, Fanny Orlhac, Narinée Hovhannisyan-Baghdasarian, Marie Luporsi, Erwin Woff, Sarah Lagha, Paulette Salamoun Feghali, Christine Lonjou, Clément Beaulaton, Andrei Zinovyev, Hélène Salmon, Thomas Walter, Irène Buvat, Nicolas Girard, Emmanuel Barillot
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-55847-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594540284870656
author Nicolas Captier
Marvin Lerousseau
Fanny Orlhac
Narinée Hovhannisyan-Baghdasarian
Marie Luporsi
Erwin Woff
Sarah Lagha
Paulette Salamoun Feghali
Christine Lonjou
Clément Beaulaton
Andrei Zinovyev
Hélène Salmon
Thomas Walter
Irène Buvat
Nicolas Girard
Emmanuel Barillot
author_facet Nicolas Captier
Marvin Lerousseau
Fanny Orlhac
Narinée Hovhannisyan-Baghdasarian
Marie Luporsi
Erwin Woff
Sarah Lagha
Paulette Salamoun Feghali
Christine Lonjou
Clément Beaulaton
Andrei Zinovyev
Hélène Salmon
Thomas Walter
Irène Buvat
Nicolas Girard
Emmanuel Barillot
author_sort Nicolas Captier
collection DOAJ
description Abstract Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information. Testing multiple integration strategies, most of them yield multimodal models surpassing both the best unimodal models and established univariate biomarkers, such as PD-L1 expression. Additionally, several multimodal combinations demonstrate improved patient risk stratification compared to models built with routine clinical features only. Our study thus provides evidence of the superiority of multimodal over unimodal approaches, advocating for the collection of large multimodal NSCLC datasets to develop and validate robust and powerful immunotherapy biomarkers.
format Article
id doaj-art-31249822e74440e199f362001f3cb902
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-31249822e74440e199f362001f3cb9022025-01-19T12:32:21ZengNature PortfolioNature Communications2041-17232025-01-0116111910.1038/s41467-025-55847-5Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancerNicolas Captier0Marvin Lerousseau1Fanny Orlhac2Narinée Hovhannisyan-Baghdasarian3Marie Luporsi4Erwin Woff5Sarah Lagha6Paulette Salamoun Feghali7Christine Lonjou8Clément Beaulaton9Andrei Zinovyev10Hélène Salmon11Thomas Walter12Irène Buvat13Nicolas Girard14Emmanuel Barillot15Laboratoire d’Imagerie Translationnelle en Oncologie, Institut Curie, Inserm U1288, PSL Research UniversityBioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research UniversityLaboratoire d’Imagerie Translationnelle en Oncologie, Institut Curie, Inserm U1288, PSL Research UniversityLaboratoire d’Imagerie Translationnelle en Oncologie, Institut Curie, Inserm U1288, PSL Research UniversityLaboratoire d’Imagerie Translationnelle en Oncologie, Institut Curie, Inserm U1288, PSL Research UniversityLaboratoire d’Imagerie Translationnelle en Oncologie, Institut Curie, Inserm U1288, PSL Research UniversityInstitut du Thorax Curie-Montsouris, Institut CurieInstitut du Thorax Curie-Montsouris, Institut CurieBioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research UniversityDepartment of pathology, Institut CurieIn silico R&D, EvotecImmunity and cancer, Institut Curie, Inserm U932, PSL Research UniversityBioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research UniversityLaboratoire d’Imagerie Translationnelle en Oncologie, Institut Curie, Inserm U1288, PSL Research UniversityInstitut du Thorax Curie-Montsouris, Institut CurieBioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research UniversityAbstract Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information. Testing multiple integration strategies, most of them yield multimodal models surpassing both the best unimodal models and established univariate biomarkers, such as PD-L1 expression. Additionally, several multimodal combinations demonstrate improved patient risk stratification compared to models built with routine clinical features only. Our study thus provides evidence of the superiority of multimodal over unimodal approaches, advocating for the collection of large multimodal NSCLC datasets to develop and validate robust and powerful immunotherapy biomarkers.https://doi.org/10.1038/s41467-025-55847-5
spellingShingle Nicolas Captier
Marvin Lerousseau
Fanny Orlhac
Narinée Hovhannisyan-Baghdasarian
Marie Luporsi
Erwin Woff
Sarah Lagha
Paulette Salamoun Feghali
Christine Lonjou
Clément Beaulaton
Andrei Zinovyev
Hélène Salmon
Thomas Walter
Irène Buvat
Nicolas Girard
Emmanuel Barillot
Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer
Nature Communications
title Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer
title_full Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer
title_fullStr Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer
title_full_unstemmed Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer
title_short Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer
title_sort integration of clinical pathological radiological and transcriptomic data improves prediction for first line immunotherapy outcome in metastatic non small cell lung cancer
url https://doi.org/10.1038/s41467-025-55847-5
work_keys_str_mv AT nicolascaptier integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT marvinlerousseau integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT fannyorlhac integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT narineehovhannisyanbaghdasarian integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT marieluporsi integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT erwinwoff integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT sarahlagha integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT paulettesalamounfeghali integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT christinelonjou integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT clementbeaulaton integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT andreizinovyev integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT helenesalmon integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT thomaswalter integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT irenebuvat integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT nicolasgirard integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer
AT emmanuelbarillot integrationofclinicalpathologicalradiologicalandtranscriptomicdataimprovespredictionforfirstlineimmunotherapyoutcomeinmetastaticnonsmallcelllungcancer