Global Existence of Strong Solutions to a Class of Fully Nonlinear Wave Equations with Strongly Damped Terms
We consider the global existence of strong solution u, corresponding to a class of fully nonlinear wave equations with strongly damped terms utt-kΔut=f(x,Δu)+g(x,u,Du,D2u) in a bounded and smooth domain Ω in Rn, where f(x,Δu) is a given monotone in Δu nonlinearity satisfying some dissipativity and g...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2012/805158 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the global existence of strong solution u, corresponding to a class of fully nonlinear wave equations with strongly damped terms utt-kΔut=f(x,Δu)+g(x,u,Du,D2u) in a bounded and smooth domain Ω in Rn, where f(x,Δu) is a given monotone in Δu nonlinearity satisfying some dissipativity and growth restrictions and g(x,u,Du,D2u) is in a sense subordinated to f(x,Δu). By using spatial sequence techniques, the Galerkin approximation method, and some monotonicity arguments, we obtained the global existence of a solution u∈Lloc∞((0,∞),W2,p(Ω)∩W01,p(Ω)). |
---|---|
ISSN: | 1110-757X 1687-0042 |