Transformer-Based Model for Monocular Visual Odometry: A Video Understanding Approach
Estimating the camera’s pose given images from a single camera is a traditional task in mobile robots and autonomous vehicles. This problem is called monocular visual odometry and often relies on geometric approaches that require considerable engineering effort for a specific scenario. De...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10845764/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Estimating the camera’s pose given images from a single camera is a traditional task in mobile robots and autonomous vehicles. This problem is called monocular visual odometry and often relies on geometric approaches that require considerable engineering effort for a specific scenario. Deep learning methods have been shown to be generalizable after proper training and with a large amount of available data. Transformer-based architectures have dominated the state-of-the-art in natural language processing and computer vision tasks, such as image and video understanding. In this work, we deal with the monocular visual odometry as a video understanding task to estimate the 6 degrees of freedom of a camera’s pose. We contribute by presenting the TSformer-VO model based on spatio-temporal self-attention mechanisms to extract features from clips and estimate the motions in an end-to-end manner. Our approach achieved competitive state-of-the-art performance compared with geometry-based and deep learning-based methods on the KITTI visual odometry dataset, outperforming the DeepVO implementation highly accepted in the visual odometry community. The code is publicly available at <uri>https://github.com/aofrancani/TSformer-VO</uri>. |
---|---|
ISSN: | 2169-3536 |