On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations

In this paper, the mixed-type linear and Euler-Lagrange-Rassias functional equations introduced by J. M. Rassias is generalized to the following n-dimensional functional equation: f(∑i=1nxi)+(n−2)∑i=1nf(xi)=∑1≤i<j≤nf(xi−xj) when n>2. We prove the general solutions and investigate its general...

Full description

Saved in:
Bibliographic Details
Main Author: Paisan Nakmahachalasint
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2007/63239
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832560723053510656
author Paisan Nakmahachalasint
author_facet Paisan Nakmahachalasint
author_sort Paisan Nakmahachalasint
collection DOAJ
description In this paper, the mixed-type linear and Euler-Lagrange-Rassias functional equations introduced by J. M. Rassias is generalized to the following n-dimensional functional equation: f(∑i=1nxi)+(n−2)∑i=1nf(xi)=∑1≤i<j≤nf(xi−xj) when n>2. We prove the general solutions and investigate its generalized Ulam-Gavruta-Rassias stability.
format Article
id doaj-art-304452ffb1ff42b29268964375ff77ed
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2007-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-304452ffb1ff42b29268964375ff77ed2025-02-03T01:26:47ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252007-01-01200710.1155/2007/6323963239On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional EquationsPaisan Nakmahachalasint0Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, ThailandIn this paper, the mixed-type linear and Euler-Lagrange-Rassias functional equations introduced by J. M. Rassias is generalized to the following n-dimensional functional equation: f(∑i=1nxi)+(n−2)∑i=1nf(xi)=∑1≤i<j≤nf(xi−xj) when n>2. We prove the general solutions and investigate its generalized Ulam-Gavruta-Rassias stability.http://dx.doi.org/10.1155/2007/63239
spellingShingle Paisan Nakmahachalasint
On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations
International Journal of Mathematics and Mathematical Sciences
title On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations
title_full On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations
title_fullStr On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations
title_full_unstemmed On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations
title_short On the Generalized Ulam-Gavruta-Rassias Stability of Mixed-Type Linear and Euler-Lagrange-Rassias Functional Equations
title_sort on the generalized ulam gavruta rassias stability of mixed type linear and euler lagrange rassias functional equations
url http://dx.doi.org/10.1155/2007/63239
work_keys_str_mv AT paisannakmahachalasint onthegeneralizedulamgavrutarassiasstabilityofmixedtypelinearandeulerlagrangerassiasfunctionalequations