The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant
Direct steam generation (DSG) is a promising technology for introducing solar energy into industrial applications, yet it still faces significant challenges. This work analyzes two critical issues associated with DSG: temperature gradients on the receiver tube wall caused by direct and concentrated...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/18/2/409 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832588538531545088 |
---|---|
author | Guillermo Benítez-Olivares Alejandro Torres-Aldaco Raúl Lugo-Leyte José Javier Valencia-López Luis Alberto Romero-Vázquez Helen D. Lugo-Méndez |
author_facet | Guillermo Benítez-Olivares Alejandro Torres-Aldaco Raúl Lugo-Leyte José Javier Valencia-López Luis Alberto Romero-Vázquez Helen D. Lugo-Méndez |
author_sort | Guillermo Benítez-Olivares |
collection | DOAJ |
description | Direct steam generation (DSG) is a promising technology for introducing solar energy into industrial applications, yet it still faces significant challenges. This work analyzes two critical issues associated with DSG: temperature gradients on the receiver tube wall caused by direct and concentrated radiation and flow instability resulting from the phase transition of the working fluid from liquid–vapor to vapor. These phenomena can reduce the mechanical strength of the receiver tube and lead to sudden pressure increases, deformation, or rupture, which hinder the implementation of DSG in solar thermal plants. To address these challenges, the behavior of a receiver tube composed of copper on the inside and an Al<sub>2</sub>O<sub>3</sub> envelope is studied. A 50 MWe hybrid solar thermal plant is proposed for Mulegé, Baja California Sur, Mexico, including a solar field designed to analyze the production of superheated steam during peak solar irradiance hours. The effect of the Cu-Al<sub>2</sub>O<sub>3</sub> ratio on the receiver tube is evaluated, with Al<sub>2</sub>O<sub>3</sub> serving as a thermal regulator to reduce temperature gradients and mitigate flow instability. This combination of materials improves the receiver tube’s performance, ensuring mechanical stability and enhancing the viability of DSG systems. By reducing temperature gradients and flow instability, DSG-based plants can double thermal efficiency and significantly lower environmental impact by eliminating the need for thermal oils, which require frequent replacement. These findings demonstrate the potential for hybrid solar thermal plants to provide sustainable and efficient solutions for industrial energy needs. |
format | Article |
id | doaj-art-2fcc194c86f1433f92afc8863a2c6531 |
institution | Kabale University |
issn | 1996-1073 |
language | English |
publishDate | 2025-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj-art-2fcc194c86f1433f92afc8863a2c65312025-01-24T13:31:23ZengMDPI AGEnergies1996-10732025-01-0118240910.3390/en18020409The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar PlantGuillermo Benítez-Olivares0Alejandro Torres-Aldaco1Raúl Lugo-Leyte2José Javier Valencia-López3Luis Alberto Romero-Vázquez4Helen D. Lugo-Méndez5División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana—Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1a Sección, Alcaldía Iztapalapa, Mexico City 09310, MexicoDivisión de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana—Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1a Sección, Alcaldía Iztapalapa, Mexico City 09310, MexicoDivisión de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana—Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1a Sección, Alcaldía Iztapalapa, Mexico City 09310, MexicoDivisión de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana—Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Alcaldía Cuajimalpa, Mexico City 05348, MexicoDivisión de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana—Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1a Sección, Alcaldía Iztapalapa, Mexico City 09310, MexicoDivisión de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana—Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Alcaldía Cuajimalpa, Mexico City 05348, MexicoDirect steam generation (DSG) is a promising technology for introducing solar energy into industrial applications, yet it still faces significant challenges. This work analyzes two critical issues associated with DSG: temperature gradients on the receiver tube wall caused by direct and concentrated radiation and flow instability resulting from the phase transition of the working fluid from liquid–vapor to vapor. These phenomena can reduce the mechanical strength of the receiver tube and lead to sudden pressure increases, deformation, or rupture, which hinder the implementation of DSG in solar thermal plants. To address these challenges, the behavior of a receiver tube composed of copper on the inside and an Al<sub>2</sub>O<sub>3</sub> envelope is studied. A 50 MWe hybrid solar thermal plant is proposed for Mulegé, Baja California Sur, Mexico, including a solar field designed to analyze the production of superheated steam during peak solar irradiance hours. The effect of the Cu-Al<sub>2</sub>O<sub>3</sub> ratio on the receiver tube is evaluated, with Al<sub>2</sub>O<sub>3</sub> serving as a thermal regulator to reduce temperature gradients and mitigate flow instability. This combination of materials improves the receiver tube’s performance, ensuring mechanical stability and enhancing the viability of DSG systems. By reducing temperature gradients and flow instability, DSG-based plants can double thermal efficiency and significantly lower environmental impact by eliminating the need for thermal oils, which require frequent replacement. These findings demonstrate the potential for hybrid solar thermal plants to provide sustainable and efficient solutions for industrial energy needs.https://www.mdpi.com/1996-1073/18/2/409solar thermal systemstructural deformationvariations and thermal stabilityworking fluids |
spellingShingle | Guillermo Benítez-Olivares Alejandro Torres-Aldaco Raúl Lugo-Leyte José Javier Valencia-López Luis Alberto Romero-Vázquez Helen D. Lugo-Méndez The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant Energies solar thermal system structural deformation variations and thermal stability working fluids |
title | The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant |
title_full | The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant |
title_fullStr | The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant |
title_full_unstemmed | The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant |
title_short | The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant |
title_sort | influence of the cu al sub 2 sub o sub 3 sub ratio of the receiving tube in a 50 mw hybrid solar plant |
topic | solar thermal system structural deformation variations and thermal stability working fluids |
url | https://www.mdpi.com/1996-1073/18/2/409 |
work_keys_str_mv | AT guillermobenitezolivares theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT alejandrotorresaldaco theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT raullugoleyte theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT josejaviervalencialopez theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT luisalbertoromerovazquez theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT helendlugomendez theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT guillermobenitezolivares influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT alejandrotorresaldaco influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT raullugoleyte influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT josejaviervalencialopez influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT luisalbertoromerovazquez influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant AT helendlugomendez influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant |