The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant

Direct steam generation (DSG) is a promising technology for introducing solar energy into industrial applications, yet it still faces significant challenges. This work analyzes two critical issues associated with DSG: temperature gradients on the receiver tube wall caused by direct and concentrated...

Full description

Saved in:
Bibliographic Details
Main Authors: Guillermo Benítez-Olivares, Alejandro Torres-Aldaco, Raúl Lugo-Leyte, José Javier Valencia-López, Luis Alberto Romero-Vázquez, Helen D. Lugo-Méndez
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/2/409
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588538531545088
author Guillermo Benítez-Olivares
Alejandro Torres-Aldaco
Raúl Lugo-Leyte
José Javier Valencia-López
Luis Alberto Romero-Vázquez
Helen D. Lugo-Méndez
author_facet Guillermo Benítez-Olivares
Alejandro Torres-Aldaco
Raúl Lugo-Leyte
José Javier Valencia-López
Luis Alberto Romero-Vázquez
Helen D. Lugo-Méndez
author_sort Guillermo Benítez-Olivares
collection DOAJ
description Direct steam generation (DSG) is a promising technology for introducing solar energy into industrial applications, yet it still faces significant challenges. This work analyzes two critical issues associated with DSG: temperature gradients on the receiver tube wall caused by direct and concentrated radiation and flow instability resulting from the phase transition of the working fluid from liquid–vapor to vapor. These phenomena can reduce the mechanical strength of the receiver tube and lead to sudden pressure increases, deformation, or rupture, which hinder the implementation of DSG in solar thermal plants. To address these challenges, the behavior of a receiver tube composed of copper on the inside and an Al<sub>2</sub>O<sub>3</sub> envelope is studied. A 50 MWe hybrid solar thermal plant is proposed for Mulegé, Baja California Sur, Mexico, including a solar field designed to analyze the production of superheated steam during peak solar irradiance hours. The effect of the Cu-Al<sub>2</sub>O<sub>3</sub> ratio on the receiver tube is evaluated, with Al<sub>2</sub>O<sub>3</sub> serving as a thermal regulator to reduce temperature gradients and mitigate flow instability. This combination of materials improves the receiver tube’s performance, ensuring mechanical stability and enhancing the viability of DSG systems. By reducing temperature gradients and flow instability, DSG-based plants can double thermal efficiency and significantly lower environmental impact by eliminating the need for thermal oils, which require frequent replacement. These findings demonstrate the potential for hybrid solar thermal plants to provide sustainable and efficient solutions for industrial energy needs.
format Article
id doaj-art-2fcc194c86f1433f92afc8863a2c6531
institution Kabale University
issn 1996-1073
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj-art-2fcc194c86f1433f92afc8863a2c65312025-01-24T13:31:23ZengMDPI AGEnergies1996-10732025-01-0118240910.3390/en18020409The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar PlantGuillermo Benítez-Olivares0Alejandro Torres-Aldaco1Raúl Lugo-Leyte2José Javier Valencia-López3Luis Alberto Romero-Vázquez4Helen D. Lugo-Méndez5División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana—Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1a Sección, Alcaldía Iztapalapa, Mexico City 09310, MexicoDivisión de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana—Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1a Sección, Alcaldía Iztapalapa, Mexico City 09310, MexicoDivisión de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana—Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1a Sección, Alcaldía Iztapalapa, Mexico City 09310, MexicoDivisión de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana—Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Alcaldía Cuajimalpa, Mexico City 05348, MexicoDivisión de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana—Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1a Sección, Alcaldía Iztapalapa, Mexico City 09310, MexicoDivisión de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana—Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Alcaldía Cuajimalpa, Mexico City 05348, MexicoDirect steam generation (DSG) is a promising technology for introducing solar energy into industrial applications, yet it still faces significant challenges. This work analyzes two critical issues associated with DSG: temperature gradients on the receiver tube wall caused by direct and concentrated radiation and flow instability resulting from the phase transition of the working fluid from liquid–vapor to vapor. These phenomena can reduce the mechanical strength of the receiver tube and lead to sudden pressure increases, deformation, or rupture, which hinder the implementation of DSG in solar thermal plants. To address these challenges, the behavior of a receiver tube composed of copper on the inside and an Al<sub>2</sub>O<sub>3</sub> envelope is studied. A 50 MWe hybrid solar thermal plant is proposed for Mulegé, Baja California Sur, Mexico, including a solar field designed to analyze the production of superheated steam during peak solar irradiance hours. The effect of the Cu-Al<sub>2</sub>O<sub>3</sub> ratio on the receiver tube is evaluated, with Al<sub>2</sub>O<sub>3</sub> serving as a thermal regulator to reduce temperature gradients and mitigate flow instability. This combination of materials improves the receiver tube’s performance, ensuring mechanical stability and enhancing the viability of DSG systems. By reducing temperature gradients and flow instability, DSG-based plants can double thermal efficiency and significantly lower environmental impact by eliminating the need for thermal oils, which require frequent replacement. These findings demonstrate the potential for hybrid solar thermal plants to provide sustainable and efficient solutions for industrial energy needs.https://www.mdpi.com/1996-1073/18/2/409solar thermal systemstructural deformationvariations and thermal stabilityworking fluids
spellingShingle Guillermo Benítez-Olivares
Alejandro Torres-Aldaco
Raúl Lugo-Leyte
José Javier Valencia-López
Luis Alberto Romero-Vázquez
Helen D. Lugo-Méndez
The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant
Energies
solar thermal system
structural deformation
variations and thermal stability
working fluids
title The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant
title_full The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant
title_fullStr The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant
title_full_unstemmed The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant
title_short The Influence of the Cu-Al<sub>2</sub>O<sub>3</sub> Ratio of the Receiving Tube in a 50 MW Hybrid Solar Plant
title_sort influence of the cu al sub 2 sub o sub 3 sub ratio of the receiving tube in a 50 mw hybrid solar plant
topic solar thermal system
structural deformation
variations and thermal stability
working fluids
url https://www.mdpi.com/1996-1073/18/2/409
work_keys_str_mv AT guillermobenitezolivares theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT alejandrotorresaldaco theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT raullugoleyte theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT josejaviervalencialopez theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT luisalbertoromerovazquez theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT helendlugomendez theinfluenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT guillermobenitezolivares influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT alejandrotorresaldaco influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT raullugoleyte influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT josejaviervalencialopez influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT luisalbertoromerovazquez influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant
AT helendlugomendez influenceofthecualsub2subosub3subratioofthereceivingtubeina50mwhybridsolarplant