Finite Local Rings of Length 4

This paper presents a comprehensive characterization of finite local rings of length 4 and with residue field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="double-str...

Full description

Saved in:
Bibliographic Details
Main Authors: Sami Alabiad, Alhanouf Ali Alhomaidhi, Nawal A. Alsarori
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/12
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589103647948800
author Sami Alabiad
Alhanouf Ali Alhomaidhi
Nawal A. Alsarori
author_facet Sami Alabiad
Alhanouf Ali Alhomaidhi
Nawal A. Alsarori
author_sort Sami Alabiad
collection DOAJ
description This paper presents a comprehensive characterization of finite local rings of length 4 and with residue field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">F</mi><msup><mi>p</mi><mi>m</mi></msup></msub><mo>,</mo></mrow></semantics></math></inline-formula> where <i>p</i> is a prime number. Such rings have an order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mrow><mn>4</mn><mi>m</mi></mrow></msup></semantics></math></inline-formula> elements. The current paper provides the structure and classification, up to isomorphism, of local rings consisting of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mrow><mn>4</mn><mi>m</mi></mrow></msup></semantics></math></inline-formula> elements. We also give the exact number of non-isomorphic classes of these rings with fixed invariants <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>.</mo></mrow></semantics></math></inline-formula> In particular, we have listed all finite local rings of 4-length and of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mn>8</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>256</mn><mo>.</mo></mrow></semantics></math></inline-formula>
format Article
id doaj-art-2faa478e59ea421c8c1e7d8446cd03aa
institution Kabale University
issn 2075-1680
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-2faa478e59ea421c8c1e7d8446cd03aa2025-01-24T13:22:08ZengMDPI AGAxioms2075-16802024-12-011411210.3390/axioms14010012Finite Local Rings of Length 4Sami Alabiad0Alhanouf Ali Alhomaidhi1Nawal A. Alsarori2Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, IndiaThis paper presents a comprehensive characterization of finite local rings of length 4 and with residue field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">F</mi><msup><mi>p</mi><mi>m</mi></msup></msub><mo>,</mo></mrow></semantics></math></inline-formula> where <i>p</i> is a prime number. Such rings have an order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mrow><mn>4</mn><mi>m</mi></mrow></msup></semantics></math></inline-formula> elements. The current paper provides the structure and classification, up to isomorphism, of local rings consisting of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mrow><mn>4</mn><mi>m</mi></mrow></msup></semantics></math></inline-formula> elements. We also give the exact number of non-isomorphic classes of these rings with fixed invariants <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>.</mo></mrow></semantics></math></inline-formula> In particular, we have listed all finite local rings of 4-length and of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mn>8</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>256</mn><mo>.</mo></mrow></semantics></math></inline-formula>https://www.mdpi.com/2075-1680/14/1/12finite ringscoding over ringslocal ringsisomorphism classes
spellingShingle Sami Alabiad
Alhanouf Ali Alhomaidhi
Nawal A. Alsarori
Finite Local Rings of Length 4
Axioms
finite rings
coding over rings
local rings
isomorphism classes
title Finite Local Rings of Length 4
title_full Finite Local Rings of Length 4
title_fullStr Finite Local Rings of Length 4
title_full_unstemmed Finite Local Rings of Length 4
title_short Finite Local Rings of Length 4
title_sort finite local rings of length 4
topic finite rings
coding over rings
local rings
isomorphism classes
url https://www.mdpi.com/2075-1680/14/1/12
work_keys_str_mv AT samialabiad finitelocalringsoflength4
AT alhanoufalialhomaidhi finitelocalringsoflength4
AT nawalaalsarori finitelocalringsoflength4