Dissipationless transport signature of topological nodal lines

Abstract Topological materials, such as topological insulators or semimetals, usually not only reveal the non-trivial properties of their electronic wavefunctions through the appearance of stable boundary modes, but also through very specific electromagnetic responses. The anisotropic longitudinal m...

Full description

Saved in:
Bibliographic Details
Main Authors: Arthur Veyrat, Klaus Koepernik, Louis Veyrat, Grigory Shipunov, Iryna Kovalchuk, Saicharan Aswartham, Jiang Qu, Ankit Kumar, Michele Ceccardi, Federico Caglieris, Nicolás Pérez, Romain Giraud, Bernd Büchner, Jeroen van den Brink, Carmine Ortix, Joseph Dufouleur
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-61059-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849343446630793216
author Arthur Veyrat
Klaus Koepernik
Louis Veyrat
Grigory Shipunov
Iryna Kovalchuk
Saicharan Aswartham
Jiang Qu
Ankit Kumar
Michele Ceccardi
Federico Caglieris
Nicolás Pérez
Romain Giraud
Bernd Büchner
Jeroen van den Brink
Carmine Ortix
Joseph Dufouleur
author_facet Arthur Veyrat
Klaus Koepernik
Louis Veyrat
Grigory Shipunov
Iryna Kovalchuk
Saicharan Aswartham
Jiang Qu
Ankit Kumar
Michele Ceccardi
Federico Caglieris
Nicolás Pérez
Romain Giraud
Bernd Büchner
Jeroen van den Brink
Carmine Ortix
Joseph Dufouleur
author_sort Arthur Veyrat
collection DOAJ
description Abstract Topological materials, such as topological insulators or semimetals, usually not only reveal the non-trivial properties of their electronic wavefunctions through the appearance of stable boundary modes, but also through very specific electromagnetic responses. The anisotropic longitudinal magnetoresistance of Weyl semimetals, for instance, carries the signature of the chiral anomaly of Weyl fermions. However for topological nodal line semimetals—materials where the valence and conduction bands cross each other on one-dimensional curves in the three-dimensional Brillouin zone—such a characteristic has been lacking. Here we report the discovery of a peculiar charge transport effect generated by topological nodal lines in trigonal crystals: a dissipationless transverse signal in the presence of coplanar electric and magnetic fields, which we attribute to a Zeeman-induced conversion of topological nodal lines into Weyl nodes under infinitesimally small magnetic fields. We evidence this dissipationless topological response in trigonal PtBi2 persisting up to room temperature, consistent with the presence of extensive topological nodal lines in the band structure of this non-magnetic material. These findings provide a pathway to engineer Weyl nodes by arbitrary small magnetic fields and reveal that bulk topological nodal lines can exhibit non-dissipative transport properties.
format Article
id doaj-art-2f99b0148dd24934bacf610c936d8eac
institution Kabale University
issn 2041-1723
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-2f99b0148dd24934bacf610c936d8eac2025-08-20T03:43:00ZengNature PortfolioNature Communications2041-17232025-07-011611710.1038/s41467-025-61059-8Dissipationless transport signature of topological nodal linesArthur Veyrat0Klaus Koepernik1Louis Veyrat2Grigory Shipunov3Iryna Kovalchuk4Saicharan Aswartham5Jiang Qu6Ankit Kumar7Michele Ceccardi8Federico Caglieris9Nicolás Pérez10Romain Giraud11Bernd Büchner12Jeroen van den Brink13Carmine Ortix14Joseph Dufouleur15Leibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Department of Physics, University of GenoaCNR-SPIN InstituteLeibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Leibniz Institute for Solid State and Materials Research (IFW Dresden)Dipartimento di Fisica “E. R. Caianiello”, Universitá di SalernoLeibniz Institute for Solid State and Materials Research (IFW Dresden)Abstract Topological materials, such as topological insulators or semimetals, usually not only reveal the non-trivial properties of their electronic wavefunctions through the appearance of stable boundary modes, but also through very specific electromagnetic responses. The anisotropic longitudinal magnetoresistance of Weyl semimetals, for instance, carries the signature of the chiral anomaly of Weyl fermions. However for topological nodal line semimetals—materials where the valence and conduction bands cross each other on one-dimensional curves in the three-dimensional Brillouin zone—such a characteristic has been lacking. Here we report the discovery of a peculiar charge transport effect generated by topological nodal lines in trigonal crystals: a dissipationless transverse signal in the presence of coplanar electric and magnetic fields, which we attribute to a Zeeman-induced conversion of topological nodal lines into Weyl nodes under infinitesimally small magnetic fields. We evidence this dissipationless topological response in trigonal PtBi2 persisting up to room temperature, consistent with the presence of extensive topological nodal lines in the band structure of this non-magnetic material. These findings provide a pathway to engineer Weyl nodes by arbitrary small magnetic fields and reveal that bulk topological nodal lines can exhibit non-dissipative transport properties.https://doi.org/10.1038/s41467-025-61059-8
spellingShingle Arthur Veyrat
Klaus Koepernik
Louis Veyrat
Grigory Shipunov
Iryna Kovalchuk
Saicharan Aswartham
Jiang Qu
Ankit Kumar
Michele Ceccardi
Federico Caglieris
Nicolás Pérez
Romain Giraud
Bernd Büchner
Jeroen van den Brink
Carmine Ortix
Joseph Dufouleur
Dissipationless transport signature of topological nodal lines
Nature Communications
title Dissipationless transport signature of topological nodal lines
title_full Dissipationless transport signature of topological nodal lines
title_fullStr Dissipationless transport signature of topological nodal lines
title_full_unstemmed Dissipationless transport signature of topological nodal lines
title_short Dissipationless transport signature of topological nodal lines
title_sort dissipationless transport signature of topological nodal lines
url https://doi.org/10.1038/s41467-025-61059-8
work_keys_str_mv AT arthurveyrat dissipationlesstransportsignatureoftopologicalnodallines
AT klauskoepernik dissipationlesstransportsignatureoftopologicalnodallines
AT louisveyrat dissipationlesstransportsignatureoftopologicalnodallines
AT grigoryshipunov dissipationlesstransportsignatureoftopologicalnodallines
AT irynakovalchuk dissipationlesstransportsignatureoftopologicalnodallines
AT saicharanaswartham dissipationlesstransportsignatureoftopologicalnodallines
AT jiangqu dissipationlesstransportsignatureoftopologicalnodallines
AT ankitkumar dissipationlesstransportsignatureoftopologicalnodallines
AT michelececcardi dissipationlesstransportsignatureoftopologicalnodallines
AT federicocaglieris dissipationlesstransportsignatureoftopologicalnodallines
AT nicolasperez dissipationlesstransportsignatureoftopologicalnodallines
AT romaingiraud dissipationlesstransportsignatureoftopologicalnodallines
AT berndbuchner dissipationlesstransportsignatureoftopologicalnodallines
AT jeroenvandenbrink dissipationlesstransportsignatureoftopologicalnodallines
AT carmineortix dissipationlesstransportsignatureoftopologicalnodallines
AT josephdufouleur dissipationlesstransportsignatureoftopologicalnodallines