On the difference of values of the kernel function at consecutive integers

For each positive integer n, set γ(n)=Πp|np. Given a fixed integer k≠±1, we establish that if the ABC-conjecture holds, then the equation γ(n+1)−γ(n)=k has only finitely many solutions. In the particular cases k=±1 , we provide a large family of solutions for each of the corresponding equations....

Full description

Saved in:
Bibliographic Details
Main Authors: Jean-Marie De Koninck, Florian Luca
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S016117120330403X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832565436089106432
author Jean-Marie De Koninck
Florian Luca
author_facet Jean-Marie De Koninck
Florian Luca
author_sort Jean-Marie De Koninck
collection DOAJ
description For each positive integer n, set γ(n)=Πp|np. Given a fixed integer k≠±1, we establish that if the ABC-conjecture holds, then the equation γ(n+1)−γ(n)=k has only finitely many solutions. In the particular cases k=±1 , we provide a large family of solutions for each of the corresponding equations.
format Article
id doaj-art-2f6b848fd7c44b46bc25105488bdb032
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-2f6b848fd7c44b46bc25105488bdb0322025-02-03T01:07:48ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-012003674249426210.1155/S016117120330403XOn the difference of values of the kernel function at consecutive integersJean-Marie De Koninck0Florian Luca1Département de Mathématiques, Université Laval, Québec G1K 7P4, CanadaMathematical Institute, University Nacional Autónoma de México (UNAM), Apartado Postal 61-3 (Xangari), Morelia, Michoacán CP 58 089, MexicoFor each positive integer n, set γ(n)=Πp|np. Given a fixed integer k≠±1, we establish that if the ABC-conjecture holds, then the equation γ(n+1)−γ(n)=k has only finitely many solutions. In the particular cases k=±1 , we provide a large family of solutions for each of the corresponding equations.http://dx.doi.org/10.1155/S016117120330403X
spellingShingle Jean-Marie De Koninck
Florian Luca
On the difference of values of the kernel function at consecutive integers
International Journal of Mathematics and Mathematical Sciences
title On the difference of values of the kernel function at consecutive integers
title_full On the difference of values of the kernel function at consecutive integers
title_fullStr On the difference of values of the kernel function at consecutive integers
title_full_unstemmed On the difference of values of the kernel function at consecutive integers
title_short On the difference of values of the kernel function at consecutive integers
title_sort on the difference of values of the kernel function at consecutive integers
url http://dx.doi.org/10.1155/S016117120330403X
work_keys_str_mv AT jeanmariedekoninck onthedifferenceofvaluesofthekernelfunctionatconsecutiveintegers
AT florianluca onthedifferenceofvaluesofthekernelfunctionatconsecutiveintegers