Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution

Abstract Working with Resonance Chiral Theory, within the two resonance multiplets saturation scheme, we satisfy leading (and some subleading) chiral and asymptotic QCD constraints and accurately fit simultaneously the π 0 , η, η′ transition form factors, for single and double virtuality. In the lat...

Full description

Saved in:
Bibliographic Details
Main Authors: Emilio J. Estrada, Sergi Gonzàlez-Solís, Adolfo Guevara, Pablo Roig
Format: Article
Language:English
Published: SpringerOpen 2024-12-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP12(2024)203
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832572057930432512
author Emilio J. Estrada
Sergi Gonzàlez-Solís
Adolfo Guevara
Pablo Roig
author_facet Emilio J. Estrada
Sergi Gonzàlez-Solís
Adolfo Guevara
Pablo Roig
author_sort Emilio J. Estrada
collection DOAJ
description Abstract Working with Resonance Chiral Theory, within the two resonance multiplets saturation scheme, we satisfy leading (and some subleading) chiral and asymptotic QCD constraints and accurately fit simultaneously the π 0 , η, η′ transition form factors, for single and double virtuality. In the latter case, we supplement the few available measurements with lattice data to ensure a faithful description. Mainly due to the new results for the doubly virtual case, we improve over existing descriptions for the η and η′. Our evaluation of the corresponding pole contributions to the hadronic light-by-light piece of the muon g − 2 read: a μ π 0 − pole = 61.9 ± 0.6 − 1.5 + 2.4 × 10 − 11 $$ {a}_{\mu}^{\pi^0-\textrm{pole}}=\left(61.9\pm {0.6}_{-1.5}^{+2.4}\right)\times {10}^{-11} $$ , a μ η − pole = 15.2 ± 0.5 − 0.8 + 1.1 × 10 − 11 $$ {a}_{\mu}^{\eta -\textrm{pole}}=\left(15.2\pm {0.5}_{-0.8}^{+1.1}\right)\times {10}^{-11} $$ and a μ η ′ − pole = 14.2 ± 0.7 − 0.9 + 1.4 × 10 − 11 $$ {a}_{\mu}^{\eta^{\prime }-\textrm{pole}}=\left(14.2\pm {0.7}_{-0.9}^{+1.4}\right)\times {10}^{-11} $$ , for a total of a μ π 0 + η + η ′ − pole = 91.3 ± 1.0 − 1.9 + 3.0 × 10 − 11 $$ {a}_{\mu}^{\pi^0+\eta +{\eta}^{\prime }-\textrm{pole}}=\left(91.3\pm {1.0}_{-1.9}^{+3.0}\right)\times {10}^{-11} $$ , where the first and second errors are the statistical and systematic uncertainties, respectively.
format Article
id doaj-art-2f4373309fdb4374996ec88f0a37542e
institution Kabale University
issn 1029-8479
language English
publishDate 2024-12-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj-art-2f4373309fdb4374996ec88f0a37542e2025-02-02T12:06:14ZengSpringerOpenJournal of High Energy Physics1029-84792024-12-0120241214810.1007/JHEP12(2024)203Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contributionEmilio J. Estrada0Sergi Gonzàlez-Solís1Adolfo Guevara2Pablo Roig3Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalDepartament de Física Quàntica i Astrofísica, Universitat de BarcelonaÁrea Académica de Matemáticas y Física, Universidad Autónoma del Estado de HidalgoDepartamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalAbstract Working with Resonance Chiral Theory, within the two resonance multiplets saturation scheme, we satisfy leading (and some subleading) chiral and asymptotic QCD constraints and accurately fit simultaneously the π 0 , η, η′ transition form factors, for single and double virtuality. In the latter case, we supplement the few available measurements with lattice data to ensure a faithful description. Mainly due to the new results for the doubly virtual case, we improve over existing descriptions for the η and η′. Our evaluation of the corresponding pole contributions to the hadronic light-by-light piece of the muon g − 2 read: a μ π 0 − pole = 61.9 ± 0.6 − 1.5 + 2.4 × 10 − 11 $$ {a}_{\mu}^{\pi^0-\textrm{pole}}=\left(61.9\pm {0.6}_{-1.5}^{+2.4}\right)\times {10}^{-11} $$ , a μ η − pole = 15.2 ± 0.5 − 0.8 + 1.1 × 10 − 11 $$ {a}_{\mu}^{\eta -\textrm{pole}}=\left(15.2\pm {0.5}_{-0.8}^{+1.1}\right)\times {10}^{-11} $$ and a μ η ′ − pole = 14.2 ± 0.7 − 0.9 + 1.4 × 10 − 11 $$ {a}_{\mu}^{\eta^{\prime }-\textrm{pole}}=\left(14.2\pm {0.7}_{-0.9}^{+1.4}\right)\times {10}^{-11} $$ , for a total of a μ π 0 + η + η ′ − pole = 91.3 ± 1.0 − 1.9 + 3.0 × 10 − 11 $$ {a}_{\mu}^{\pi^0+\eta +{\eta}^{\prime }-\textrm{pole}}=\left(91.3\pm {1.0}_{-1.9}^{+3.0}\right)\times {10}^{-11} $$ , where the first and second errors are the statistical and systematic uncertainties, respectively.https://doi.org/10.1007/JHEP12(2024)203Chiral LagrangianEffective Field Theories of QCD
spellingShingle Emilio J. Estrada
Sergi Gonzàlez-Solís
Adolfo Guevara
Pablo Roig
Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution
Journal of High Energy Physics
Chiral Lagrangian
Effective Field Theories of QCD
title Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution
title_full Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution
title_fullStr Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution
title_full_unstemmed Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution
title_short Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution
title_sort improved π 0 η η transition form factors in resonance chiral theory and their a μ hlbl a mu textrm hlbl contribution
topic Chiral Lagrangian
Effective Field Theories of QCD
url https://doi.org/10.1007/JHEP12(2024)203
work_keys_str_mv AT emiliojestrada improvedp0ēētransitionformfactorsinresonancechiraltheoryandtheiramhlblamutextrmhlblcontribution
AT sergigonzalezsolis improvedp0ēētransitionformfactorsinresonancechiraltheoryandtheiramhlblamutextrmhlblcontribution
AT adolfoguevara improvedp0ēētransitionformfactorsinresonancechiraltheoryandtheiramhlblamutextrmhlblcontribution
AT pabloroig improvedp0ēētransitionformfactorsinresonancechiraltheoryandtheiramhlblamutextrmhlblcontribution