Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution
Abstract Working with Resonance Chiral Theory, within the two resonance multiplets saturation scheme, we satisfy leading (and some subleading) chiral and asymptotic QCD constraints and accurately fit simultaneously the π 0 , η, η′ transition form factors, for single and double virtuality. In the lat...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2024-12-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP12(2024)203 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832572057930432512 |
---|---|
author | Emilio J. Estrada Sergi Gonzàlez-Solís Adolfo Guevara Pablo Roig |
author_facet | Emilio J. Estrada Sergi Gonzàlez-Solís Adolfo Guevara Pablo Roig |
author_sort | Emilio J. Estrada |
collection | DOAJ |
description | Abstract Working with Resonance Chiral Theory, within the two resonance multiplets saturation scheme, we satisfy leading (and some subleading) chiral and asymptotic QCD constraints and accurately fit simultaneously the π 0 , η, η′ transition form factors, for single and double virtuality. In the latter case, we supplement the few available measurements with lattice data to ensure a faithful description. Mainly due to the new results for the doubly virtual case, we improve over existing descriptions for the η and η′. Our evaluation of the corresponding pole contributions to the hadronic light-by-light piece of the muon g − 2 read: a μ π 0 − pole = 61.9 ± 0.6 − 1.5 + 2.4 × 10 − 11 $$ {a}_{\mu}^{\pi^0-\textrm{pole}}=\left(61.9\pm {0.6}_{-1.5}^{+2.4}\right)\times {10}^{-11} $$ , a μ η − pole = 15.2 ± 0.5 − 0.8 + 1.1 × 10 − 11 $$ {a}_{\mu}^{\eta -\textrm{pole}}=\left(15.2\pm {0.5}_{-0.8}^{+1.1}\right)\times {10}^{-11} $$ and a μ η ′ − pole = 14.2 ± 0.7 − 0.9 + 1.4 × 10 − 11 $$ {a}_{\mu}^{\eta^{\prime }-\textrm{pole}}=\left(14.2\pm {0.7}_{-0.9}^{+1.4}\right)\times {10}^{-11} $$ , for a total of a μ π 0 + η + η ′ − pole = 91.3 ± 1.0 − 1.9 + 3.0 × 10 − 11 $$ {a}_{\mu}^{\pi^0+\eta +{\eta}^{\prime }-\textrm{pole}}=\left(91.3\pm {1.0}_{-1.9}^{+3.0}\right)\times {10}^{-11} $$ , where the first and second errors are the statistical and systematic uncertainties, respectively. |
format | Article |
id | doaj-art-2f4373309fdb4374996ec88f0a37542e |
institution | Kabale University |
issn | 1029-8479 |
language | English |
publishDate | 2024-12-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj-art-2f4373309fdb4374996ec88f0a37542e2025-02-02T12:06:14ZengSpringerOpenJournal of High Energy Physics1029-84792024-12-0120241214810.1007/JHEP12(2024)203Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contributionEmilio J. Estrada0Sergi Gonzàlez-Solís1Adolfo Guevara2Pablo Roig3Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalDepartament de Física Quàntica i Astrofísica, Universitat de BarcelonaÁrea Académica de Matemáticas y Física, Universidad Autónoma del Estado de HidalgoDepartamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalAbstract Working with Resonance Chiral Theory, within the two resonance multiplets saturation scheme, we satisfy leading (and some subleading) chiral and asymptotic QCD constraints and accurately fit simultaneously the π 0 , η, η′ transition form factors, for single and double virtuality. In the latter case, we supplement the few available measurements with lattice data to ensure a faithful description. Mainly due to the new results for the doubly virtual case, we improve over existing descriptions for the η and η′. Our evaluation of the corresponding pole contributions to the hadronic light-by-light piece of the muon g − 2 read: a μ π 0 − pole = 61.9 ± 0.6 − 1.5 + 2.4 × 10 − 11 $$ {a}_{\mu}^{\pi^0-\textrm{pole}}=\left(61.9\pm {0.6}_{-1.5}^{+2.4}\right)\times {10}^{-11} $$ , a μ η − pole = 15.2 ± 0.5 − 0.8 + 1.1 × 10 − 11 $$ {a}_{\mu}^{\eta -\textrm{pole}}=\left(15.2\pm {0.5}_{-0.8}^{+1.1}\right)\times {10}^{-11} $$ and a μ η ′ − pole = 14.2 ± 0.7 − 0.9 + 1.4 × 10 − 11 $$ {a}_{\mu}^{\eta^{\prime }-\textrm{pole}}=\left(14.2\pm {0.7}_{-0.9}^{+1.4}\right)\times {10}^{-11} $$ , for a total of a μ π 0 + η + η ′ − pole = 91.3 ± 1.0 − 1.9 + 3.0 × 10 − 11 $$ {a}_{\mu}^{\pi^0+\eta +{\eta}^{\prime }-\textrm{pole}}=\left(91.3\pm {1.0}_{-1.9}^{+3.0}\right)\times {10}^{-11} $$ , where the first and second errors are the statistical and systematic uncertainties, respectively.https://doi.org/10.1007/JHEP12(2024)203Chiral LagrangianEffective Field Theories of QCD |
spellingShingle | Emilio J. Estrada Sergi Gonzàlez-Solís Adolfo Guevara Pablo Roig Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution Journal of High Energy Physics Chiral Lagrangian Effective Field Theories of QCD |
title | Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution |
title_full | Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution |
title_fullStr | Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution |
title_full_unstemmed | Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution |
title_short | Improved π 0 , η, η′ transition form factors in resonance chiral theory and their a μ HLbL $$ {a}_{\mu}^{\textrm{HLbL}} $$ contribution |
title_sort | improved π 0 η η transition form factors in resonance chiral theory and their a μ hlbl a mu textrm hlbl contribution |
topic | Chiral Lagrangian Effective Field Theories of QCD |
url | https://doi.org/10.1007/JHEP12(2024)203 |
work_keys_str_mv | AT emiliojestrada improvedp0ēētransitionformfactorsinresonancechiraltheoryandtheiramhlblamutextrmhlblcontribution AT sergigonzalezsolis improvedp0ēētransitionformfactorsinresonancechiraltheoryandtheiramhlblamutextrmhlblcontribution AT adolfoguevara improvedp0ēētransitionformfactorsinresonancechiraltheoryandtheiramhlblamutextrmhlblcontribution AT pabloroig improvedp0ēētransitionformfactorsinresonancechiraltheoryandtheiramhlblamutextrmhlblcontribution |