Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods

This article presents a review on two methods based on dynamic mode decomposition and its multiple applications, focusing on higher order dynamic mode decomposition (which provides a purely temporal Fourier-like decomposition) and spatiotemporal Koopman decomposition (which gives a spatiotemporal Fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Soledad Le Clainche, José M. Vega
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/6920783
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561756713517056
author Soledad Le Clainche
José M. Vega
author_facet Soledad Le Clainche
José M. Vega
author_sort Soledad Le Clainche
collection DOAJ
description This article presents a review on two methods based on dynamic mode decomposition and its multiple applications, focusing on higher order dynamic mode decomposition (which provides a purely temporal Fourier-like decomposition) and spatiotemporal Koopman decomposition (which gives a spatiotemporal Fourier-like decomposition). These methods are purely data-driven, using either numerical or experimental data, and permit reconstructing the given data and identifying the temporal growth rates and frequencies involved in the dynamics and the spatial growth rates and wavenumbers in the case of the spatiotemporal Koopman decomposition. Thus, they may be used to either identify and extrapolate the dynamics from transient behavior to permanent dynamics or construct efficient, purely data-driven reduced order models.
format Article
id doaj-art-2f274696865c420c982a390b116fb96d
institution Kabale University
issn 1076-2787
1099-0526
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Complexity
spelling doaj-art-2f274696865c420c982a390b116fb96d2025-02-03T01:24:15ZengWileyComplexity1076-27871099-05262018-01-01201810.1155/2018/69207836920783Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like MethodsSoledad Le Clainche0José M. Vega1E.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, SpainE.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, SpainThis article presents a review on two methods based on dynamic mode decomposition and its multiple applications, focusing on higher order dynamic mode decomposition (which provides a purely temporal Fourier-like decomposition) and spatiotemporal Koopman decomposition (which gives a spatiotemporal Fourier-like decomposition). These methods are purely data-driven, using either numerical or experimental data, and permit reconstructing the given data and identifying the temporal growth rates and frequencies involved in the dynamics and the spatial growth rates and wavenumbers in the case of the spatiotemporal Koopman decomposition. Thus, they may be used to either identify and extrapolate the dynamics from transient behavior to permanent dynamics or construct efficient, purely data-driven reduced order models.http://dx.doi.org/10.1155/2018/6920783
spellingShingle Soledad Le Clainche
José M. Vega
Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods
Complexity
title Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods
title_full Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods
title_fullStr Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods
title_full_unstemmed Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods
title_short Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods
title_sort analyzing nonlinear dynamics via data driven dynamic mode decomposition like methods
url http://dx.doi.org/10.1155/2018/6920783
work_keys_str_mv AT soledadleclainche analyzingnonlineardynamicsviadatadrivendynamicmodedecompositionlikemethods
AT josemvega analyzingnonlineardynamicsviadatadrivendynamicmodedecompositionlikemethods