Cantelli’s Bounds for Generalized Tail Inequalities

Let <i>X</i> be a centered random vector in a finite-dimensional real inner product space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics...

Full description

Saved in:
Bibliographic Details
Main Author: Nicola Apollonio
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/43
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589103437185024
author Nicola Apollonio
author_facet Nicola Apollonio
author_sort Nicola Apollonio
collection DOAJ
description Let <i>X</i> be a centered random vector in a finite-dimensional real inner product space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula>. For a subset <i>C</i> of the ambient vector space <i>V</i> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>,</mo><mspace width="0.166667em"></mspace><mi>y</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula>, write <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><msub><mo>⪯</mo><mi>C</mi></msub><mi>y</mi></mrow></semantics></math></inline-formula> if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo>−</mo><mi>x</mi><mo>∈</mo><mi>C</mi></mrow></semantics></math></inline-formula>. If <i>C</i> is a closed convex cone in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>⪯</mo><mi>C</mi></msub></semantics></math></inline-formula> is a preorder on <i>V</i>, whereas if <i>C</i> is a proper cone in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>⪯</mo><mi>C</mi></msub></semantics></math></inline-formula> is actually a partial order on <i>V</i>. In this paper, we give sharp Cantelli-type inequalities for generalized tail probabilities such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Pr</mi><mfenced separators="" open="{" close="}"><mi>X</mi><msub><mo>⪰</mo><mi>C</mi></msub><mi>b</mi></mfenced></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula>. These inequalities are obtained by “scalarizing” <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><msub><mo>⪰</mo><mi>C</mi></msub><mi>b</mi></mrow></semantics></math></inline-formula> via cone duality and then by minimizing the classical univariate Cantelli’s bound over the scalarized inequalities. Three diverse applications to random matrices, tails of linear images of random vectors, and network homophily are also given.
format Article
id doaj-art-2f0c4068bfbd4af584b960c96ce2457d
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-2f0c4068bfbd4af584b960c96ce2457d2025-01-24T13:22:14ZengMDPI AGAxioms2075-16802025-01-011414310.3390/axioms14010043Cantelli’s Bounds for Generalized Tail InequalitiesNicola Apollonio0Istituto per le Applicazioni del Calcolo, C.N.R.,Via dei Taurini 19, 00185 Roma, ItalyLet <i>X</i> be a centered random vector in a finite-dimensional real inner product space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula>. For a subset <i>C</i> of the ambient vector space <i>V</i> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>,</mo><mspace width="0.166667em"></mspace><mi>y</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula>, write <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><msub><mo>⪯</mo><mi>C</mi></msub><mi>y</mi></mrow></semantics></math></inline-formula> if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo>−</mo><mi>x</mi><mo>∈</mo><mi>C</mi></mrow></semantics></math></inline-formula>. If <i>C</i> is a closed convex cone in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>⪯</mo><mi>C</mi></msub></semantics></math></inline-formula> is a preorder on <i>V</i>, whereas if <i>C</i> is a proper cone in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>⪯</mo><mi>C</mi></msub></semantics></math></inline-formula> is actually a partial order on <i>V</i>. In this paper, we give sharp Cantelli-type inequalities for generalized tail probabilities such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Pr</mi><mfenced separators="" open="{" close="}"><mi>X</mi><msub><mo>⪰</mo><mi>C</mi></msub><mi>b</mi></mfenced></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>V</mi></mrow></semantics></math></inline-formula>. These inequalities are obtained by “scalarizing” <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><msub><mo>⪰</mo><mi>C</mi></msub><mi>b</mi></mrow></semantics></math></inline-formula> via cone duality and then by minimizing the classical univariate Cantelli’s bound over the scalarized inequalities. Three diverse applications to random matrices, tails of linear images of random vectors, and network homophily are also given.https://www.mdpi.com/2075-1680/14/1/43tail inequalitiescone dualityWigner matrixnetwork homophily
spellingShingle Nicola Apollonio
Cantelli’s Bounds for Generalized Tail Inequalities
Axioms
tail inequalities
cone duality
Wigner matrix
network homophily
title Cantelli’s Bounds for Generalized Tail Inequalities
title_full Cantelli’s Bounds for Generalized Tail Inequalities
title_fullStr Cantelli’s Bounds for Generalized Tail Inequalities
title_full_unstemmed Cantelli’s Bounds for Generalized Tail Inequalities
title_short Cantelli’s Bounds for Generalized Tail Inequalities
title_sort cantelli s bounds for generalized tail inequalities
topic tail inequalities
cone duality
Wigner matrix
network homophily
url https://www.mdpi.com/2075-1680/14/1/43
work_keys_str_mv AT nicolaapollonio cantellisboundsforgeneralizedtailinequalities