Real Gel'fand-Mazur division algebras

We show that the complexification (A˜,τ˜) of a real locally pseudoconvex (locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially galbed) algebra (A,τ) is a complex locally pseudoconvex (resp., locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex...

Full description

Saved in:
Bibliographic Details
Main Authors: Mati Abel, Olga Panova
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171203211066
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832546587810725888
author Mati Abel
Olga Panova
author_facet Mati Abel
Olga Panova
author_sort Mati Abel
collection DOAJ
description We show that the complexification (A˜,τ˜) of a real locally pseudoconvex (locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially galbed) algebra (A,τ) is a complex locally pseudoconvex (resp., locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially galbed) algebra and all elements in the complexification (A˜,τ˜) of a commutative real exponentially galbed algebra (A,τ) with bounded elements are bounded if the multiplication in (A,τ) is jointly continuous. We give conditions for a commutative strictly real topological division algebra to be a commutative real Gel'fand-Mazur division algebra.
format Article
id doaj-art-2f087dd496034d61ae21060ed652b480
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-2f087dd496034d61ae21060ed652b4802025-02-03T06:48:05ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-012003402541255210.1155/S0161171203211066Real Gel'fand-Mazur division algebrasMati Abel0Olga Panova1Institute of Pure Mathematics, University of Tartu, 2 J. Liivi Street, Tartu 50409, EstoniaInstitute of Pure Mathematics, University of Tartu, 2 J. Liivi Street, Tartu 50409, EstoniaWe show that the complexification (A˜,τ˜) of a real locally pseudoconvex (locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially galbed) algebra (A,τ) is a complex locally pseudoconvex (resp., locally absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially galbed) algebra and all elements in the complexification (A˜,τ˜) of a commutative real exponentially galbed algebra (A,τ) with bounded elements are bounded if the multiplication in (A,τ) is jointly continuous. We give conditions for a commutative strictly real topological division algebra to be a commutative real Gel'fand-Mazur division algebra.http://dx.doi.org/10.1155/S0161171203211066
spellingShingle Mati Abel
Olga Panova
Real Gel'fand-Mazur division algebras
International Journal of Mathematics and Mathematical Sciences
title Real Gel'fand-Mazur division algebras
title_full Real Gel'fand-Mazur division algebras
title_fullStr Real Gel'fand-Mazur division algebras
title_full_unstemmed Real Gel'fand-Mazur division algebras
title_short Real Gel'fand-Mazur division algebras
title_sort real gel fand mazur division algebras
url http://dx.doi.org/10.1155/S0161171203211066
work_keys_str_mv AT matiabel realgelfandmazurdivisionalgebras
AT olgapanova realgelfandmazurdivisionalgebras