The potassium transporter KdpA affects persister formation by regulating ATP levels in Mycobacterium marinum

Mycobacterial persistence mechanisms remain to be fully characterized. Screening a transposon insertion library of Mycobacterium marinum identified kdpA, whose inactivation reduced the fraction of persisters after exposure to rifampicin. kdpA encodes a transmembrane protein that is part of the Kdp-A...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaofan Liu, Chuan Wang, Bo Yan, Liangdong Lyu, Howard E. Takiff, Qian Gao
Format: Article
Language:English
Published: Taylor & Francis Group 2020-01-01
Series:Emerging Microbes and Infections
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/22221751.2019.1710090
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mycobacterial persistence mechanisms remain to be fully characterized. Screening a transposon insertion library of Mycobacterium marinum identified kdpA, whose inactivation reduced the fraction of persisters after exposure to rifampicin. kdpA encodes a transmembrane protein that is part of the Kdp-ATPase, an ATP-dependent high-affinity potassium (K+) transport system. We found that kdpA is induced under low K+ conditions and is required for pH homeostasis and growth in media with low concentrations of K+. The inactivation of the Kdp system in a kdpA insertion mutant caused hyperpolarization of the cross-membrane potential, increased proton motive force (PMF) and elevated levels of intracellular ATP. The KdpA mutant phenotype could be complemented with a functional kdpA gene or supplementation with high K+ concentrations. Taken together, our results suggest that the Kdp system is required for ATP homeostasis and persister formation. The results also confirm that ATP-mediated regulation of persister formation is a general mechanism in bacteria, and suggest that K+ transporters could play a role in the regulation of ATP levels and persistence. These findings could have implications for the development of new drugs that could either target persisters or reduce their presence.
ISSN:2222-1751