The geometric predictive model of properties for systems with interval parameters
We consider interval geometric modeling of complex multi parametric systems having a set of parameters of different character. Some of the parameters may have interval indefiniteness. System information basis is incomplete one. The processed information depends on continuous, discrete and convent...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Omsk State Technical University, Federal State Autonoumos Educational Institution of Higher Education
2024-06-01
|
Series: | Омский научный вестник |
Subjects: | |
Online Access: | https://www.omgtu.ru/general_information/media_omgtu/journal_of_omsk_research_journal/files/arhiv/2024/%E2%84%962%20(190)%20%D0%9E%D0%9D%D0%92/15-20%20%D0%AE%D1%80%D0%BA%D0%BE%D0%B2%20%D0%92.%20%D0%AE.,%20%D0%94%D0%BE%D0%BB%D0%B3%D0%BE%D0%B2%D0%B0%20%D0%95.%20%D0%AE.,%20%D0%A7%D0%B8%D0%B6%D0%B8%D0%BA%20%D0%9C.%20%D0%90..pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832572932855955456 |
---|---|
author | V. Yu. Yurkov E. Yu. Dolgova M. A. Chizhik |
author_facet | V. Yu. Yurkov E. Yu. Dolgova M. A. Chizhik |
author_sort | V. Yu. Yurkov |
collection | DOAJ |
description | We consider interval geometric modeling of complex multi parametric systems
having a set of parameters of different character. Some of the parameters may have
interval indefiniteness. System information basis is incomplete one. The processed
information depends on continuous, discrete and conventional data. Geometric
model has a form of matrix and each element of it corresponds to some state of
the system. Each state is described by interval function of continuous input and
output parameters. The set of interval functions generates some discrete set of
multidimensional surfaces in discrete space. We use this approach and our modeling
algorithm to find predictive model of drape coefficient. The algorithm is based on
linear approximation of numerical factors in factor spaces. Interval functions make
it possible for us to vary some numerical factors within the given intervals. As an
example, the interval model of fabric drape coefficient is found. Fabric thickness
and closeness of texture are considered as input parameters. |
format | Article |
id | doaj-art-2e6c6e57a0b24e1685883d167e597988 |
institution | Kabale University |
issn | 1813-8225 2541-7541 |
language | English |
publishDate | 2024-06-01 |
publisher | Omsk State Technical University, Federal State Autonoumos Educational Institution of Higher Education |
record_format | Article |
series | Омский научный вестник |
spelling | doaj-art-2e6c6e57a0b24e1685883d167e5979882025-02-02T06:11:34ZengOmsk State Technical University, Federal State Autonoumos Educational Institution of Higher EducationОмский научный вестник1813-82252541-75412024-06-012 (190)152010.25206/1813-8225-2024-190-15-20The geometric predictive model of properties for systems with interval parametersV. Yu. Yurkov0https://orcid.org/0000-0003-2667-8103E. Yu. Dolgova1M. A. Chizhik2https://orcid.org/0000-0003-0797-875XOmsk State Technical UniversityOmsk State Technical UniversityOmsk State Technical UniversityWe consider interval geometric modeling of complex multi parametric systems having a set of parameters of different character. Some of the parameters may have interval indefiniteness. System information basis is incomplete one. The processed information depends on continuous, discrete and conventional data. Geometric model has a form of matrix and each element of it corresponds to some state of the system. Each state is described by interval function of continuous input and output parameters. The set of interval functions generates some discrete set of multidimensional surfaces in discrete space. We use this approach and our modeling algorithm to find predictive model of drape coefficient. The algorithm is based on linear approximation of numerical factors in factor spaces. Interval functions make it possible for us to vary some numerical factors within the given intervals. As an example, the interval model of fabric drape coefficient is found. Fabric thickness and closeness of texture are considered as input parameters.https://www.omgtu.ru/general_information/media_omgtu/journal_of_omsk_research_journal/files/arhiv/2024/%E2%84%962%20(190)%20%D0%9E%D0%9D%D0%92/15-20%20%D0%AE%D1%80%D0%BA%D0%BE%D0%B2%20%D0%92.%20%D0%AE.,%20%D0%94%D0%BE%D0%BB%D0%B3%D0%BE%D0%B2%D0%B0%20%D0%95.%20%D0%AE.,%20%D0%A7%D0%B8%D0%B6%D0%B8%D0%BA%20%D0%9C.%20%D0%90..pdfgeometric modelinterval analysespredictionfabricsdrape coefficient |
spellingShingle | V. Yu. Yurkov E. Yu. Dolgova M. A. Chizhik The geometric predictive model of properties for systems with interval parameters Омский научный вестник geometric model interval analyses prediction fabrics drape coefficient |
title | The geometric predictive model of properties for systems with interval parameters |
title_full | The geometric predictive model of properties for systems with interval parameters |
title_fullStr | The geometric predictive model of properties for systems with interval parameters |
title_full_unstemmed | The geometric predictive model of properties for systems with interval parameters |
title_short | The geometric predictive model of properties for systems with interval parameters |
title_sort | geometric predictive model of properties for systems with interval parameters |
topic | geometric model interval analyses prediction fabrics drape coefficient |
url | https://www.omgtu.ru/general_information/media_omgtu/journal_of_omsk_research_journal/files/arhiv/2024/%E2%84%962%20(190)%20%D0%9E%D0%9D%D0%92/15-20%20%D0%AE%D1%80%D0%BA%D0%BE%D0%B2%20%D0%92.%20%D0%AE.,%20%D0%94%D0%BE%D0%BB%D0%B3%D0%BE%D0%B2%D0%B0%20%D0%95.%20%D0%AE.,%20%D0%A7%D0%B8%D0%B6%D0%B8%D0%BA%20%D0%9C.%20%D0%90..pdf |
work_keys_str_mv | AT vyuyurkov thegeometricpredictivemodelofpropertiesforsystemswithintervalparameters AT eyudolgova thegeometricpredictivemodelofpropertiesforsystemswithintervalparameters AT machizhik thegeometricpredictivemodelofpropertiesforsystemswithintervalparameters AT vyuyurkov geometricpredictivemodelofpropertiesforsystemswithintervalparameters AT eyudolgova geometricpredictivemodelofpropertiesforsystemswithintervalparameters AT machizhik geometricpredictivemodelofpropertiesforsystemswithintervalparameters |