Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces
We characterize those measures μ for which the Hardy-Orlicz (resp., weighted Bergman-Orlicz) space HΨ1 (resp., AαΨ1) of the unit ball of CN embeds boundedly or compactly into the Orlicz space LΨ2(BN¯,μ) (resp., LΨ2(BN,μ)), when the defining functions Ψ1 and Ψ2 are growth functions such that L1⊂LΨj f...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Journal of Function Spaces and Applications |
Online Access: | http://dx.doi.org/10.1155/2012/792763 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832545292397838336 |
---|---|
author | Stéphane Charpentier Benoît Sehba |
author_facet | Stéphane Charpentier Benoît Sehba |
author_sort | Stéphane Charpentier |
collection | DOAJ |
description | We characterize those measures μ for which the Hardy-Orlicz (resp., weighted Bergman-Orlicz) space HΨ1 (resp., AαΨ1) of the unit ball of CN embeds boundedly or compactly into the Orlicz space LΨ2(BN¯,μ) (resp., LΨ2(BN,μ)), when the defining functions Ψ1 and Ψ2 are growth functions such that L1⊂LΨj for j∈{1,2}, and such that Ψ2/Ψ1 is nondecreasing. We apply our result to the characterization of the boundedness and compactness of composition operators from HΨ1 (resp., AαΨ1) into HΨ2 (resp., AαΨ2). |
format | Article |
id | doaj-art-2de17b8d738c400299d0c8cf8368b357 |
institution | Kabale University |
issn | 0972-6802 1758-4965 |
language | English |
publishDate | 2012-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces and Applications |
spelling | doaj-art-2de17b8d738c400299d0c8cf8368b3572025-02-03T07:26:14ZengWileyJournal of Function Spaces and Applications0972-68021758-49652012-01-01201210.1155/2012/792763792763Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz SpacesStéphane Charpentier0Benoît Sehba1Département de Mathématiques, Université Paris-Sud, Bâtiment 425, 91405 Orsay, FranceSchool of Mathematics, Trinity College, Dublin 2, IrelandWe characterize those measures μ for which the Hardy-Orlicz (resp., weighted Bergman-Orlicz) space HΨ1 (resp., AαΨ1) of the unit ball of CN embeds boundedly or compactly into the Orlicz space LΨ2(BN¯,μ) (resp., LΨ2(BN,μ)), when the defining functions Ψ1 and Ψ2 are growth functions such that L1⊂LΨj for j∈{1,2}, and such that Ψ2/Ψ1 is nondecreasing. We apply our result to the characterization of the boundedness and compactness of composition operators from HΨ1 (resp., AαΨ1) into HΨ2 (resp., AαΨ2).http://dx.doi.org/10.1155/2012/792763 |
spellingShingle | Stéphane Charpentier Benoît Sehba Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces Journal of Function Spaces and Applications |
title | Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces |
title_full | Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces |
title_fullStr | Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces |
title_full_unstemmed | Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces |
title_short | Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces |
title_sort | carleson measure theorems for large hardy orlicz and bergman orlicz spaces |
url | http://dx.doi.org/10.1155/2012/792763 |
work_keys_str_mv | AT stephanecharpentier carlesonmeasuretheoremsforlargehardyorliczandbergmanorliczspaces AT benoitsehba carlesonmeasuretheoremsforlargehardyorliczandbergmanorliczspaces |