Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces

We characterize those measures μ for which the Hardy-Orlicz (resp., weighted Bergman-Orlicz) space HΨ1 (resp., AαΨ1) of the unit ball of CN embeds boundedly or compactly into the Orlicz space LΨ2(BN¯,μ) (resp., LΨ2(BN,μ)), when the defining functions Ψ1 and Ψ2 are growth functions such that L1⊂LΨj f...

Full description

Saved in:
Bibliographic Details
Main Authors: Stéphane Charpentier, Benoît Sehba
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2012/792763
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545292397838336
author Stéphane Charpentier
Benoît Sehba
author_facet Stéphane Charpentier
Benoît Sehba
author_sort Stéphane Charpentier
collection DOAJ
description We characterize those measures μ for which the Hardy-Orlicz (resp., weighted Bergman-Orlicz) space HΨ1 (resp., AαΨ1) of the unit ball of CN embeds boundedly or compactly into the Orlicz space LΨ2(BN¯,μ) (resp., LΨ2(BN,μ)), when the defining functions Ψ1 and Ψ2 are growth functions such that L1⊂LΨj for j∈{1,2}, and such that Ψ2/Ψ1 is nondecreasing. We apply our result to the characterization of the boundedness and compactness of composition operators from HΨ1 (resp., AαΨ1) into HΨ2 (resp., AαΨ2).
format Article
id doaj-art-2de17b8d738c400299d0c8cf8368b357
institution Kabale University
issn 0972-6802
1758-4965
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-2de17b8d738c400299d0c8cf8368b3572025-02-03T07:26:14ZengWileyJournal of Function Spaces and Applications0972-68021758-49652012-01-01201210.1155/2012/792763792763Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz SpacesStéphane Charpentier0Benoît Sehba1Département de Mathématiques, Université Paris-Sud, Bâtiment 425, 91405 Orsay, FranceSchool of Mathematics, Trinity College, Dublin 2, IrelandWe characterize those measures μ for which the Hardy-Orlicz (resp., weighted Bergman-Orlicz) space HΨ1 (resp., AαΨ1) of the unit ball of CN embeds boundedly or compactly into the Orlicz space LΨ2(BN¯,μ) (resp., LΨ2(BN,μ)), when the defining functions Ψ1 and Ψ2 are growth functions such that L1⊂LΨj for j∈{1,2}, and such that Ψ2/Ψ1 is nondecreasing. We apply our result to the characterization of the boundedness and compactness of composition operators from HΨ1 (resp., AαΨ1) into HΨ2 (resp., AαΨ2).http://dx.doi.org/10.1155/2012/792763
spellingShingle Stéphane Charpentier
Benoît Sehba
Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces
Journal of Function Spaces and Applications
title Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces
title_full Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces
title_fullStr Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces
title_full_unstemmed Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces
title_short Carleson Measure Theorems for Large Hardy-Orlicz and Bergman-Orlicz Spaces
title_sort carleson measure theorems for large hardy orlicz and bergman orlicz spaces
url http://dx.doi.org/10.1155/2012/792763
work_keys_str_mv AT stephanecharpentier carlesonmeasuretheoremsforlargehardyorliczandbergmanorliczspaces
AT benoitsehba carlesonmeasuretheoremsforlargehardyorliczandbergmanorliczspaces