A Multimode Approach to Geometrically Nonlinear Free and Forced Vibrations of Multistepped Beams

The scope of this study is to present a contribution to the geometrically nonlinear free and forced vibration of multiple-stepped beams, based on the theories of Euler–Bernoulli and von Karman, in order to calculate their corresponding amplitude-dependent modes and frequencies. Discrete expressions...

Full description

Saved in:
Bibliographic Details
Main Authors: Issam El Hantati, Ahmed Adri, Hatim Fakhreddine, Said Rifai, Rhali Benamar
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/6697344
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The scope of this study is to present a contribution to the geometrically nonlinear free and forced vibration of multiple-stepped beams, based on the theories of Euler–Bernoulli and von Karman, in order to calculate their corresponding amplitude-dependent modes and frequencies. Discrete expressions of the strain energy and kinetic energies are derived, and Hamilton’s principle is applied to reduce the problem to a solution of a nonlinear algebraic system and then solved by an approximate method. The forced vibration is then studied based on a multimode approach. The effect of nonlinearity on the dynamic behaviour of multistepped beams in the free and forced vibration is demonstrated and discussed. The effect of varying some geometrical parameters of the stepped beams in the free and forced cases is investigated and illustrated, among which is the variation in the level of excitation.
ISSN:1070-9622
1875-9203