Numerical Investigation of Superslow Diffusion Laws for a Certain Class of Continuous-time Random Walks

Using the continuous-time random walk theory we investigate the phenomenon of anomalous superslow diffusion for which the variance of the particle position increases slowly than any positive power of time. This type of diffusion emerges in the case when the probability densities of the waiting times...

Full description

Saved in:
Bibliographic Details
Main Author: Yu.S. Bystrik
Format: Article
Language:English
Published: Sumy State University 2016-03-01
Series:Журнал нано- та електронної фізики
Subjects:
Online Access:http://jnep.sumdu.edu.ua/download/numbers/2016/1/articles/jnep_2016_V8_01044.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850236961806090240
author Yu.S. Bystrik
author_facet Yu.S. Bystrik
author_sort Yu.S. Bystrik
collection DOAJ
description Using the continuous-time random walk theory we investigate the phenomenon of anomalous superslow diffusion for which the variance of the particle position increases slowly than any positive power of time. This type of diffusion emerges in the case when the probability densities of the waiting times between the successive jumps characterized by the superheavy tails with infinite moments of any fractional order. We propose a numerical method to study the behavior of the diffusion laws and show that our numerical results are in very good agreement with the theoretical predictions.
format Article
id doaj-art-2d78dc91a9b64db9a5e3a090bb7b9e6b
institution OA Journals
issn 2077-6772
language English
publishDate 2016-03-01
publisher Sumy State University
record_format Article
series Журнал нано- та електронної фізики
spelling doaj-art-2d78dc91a9b64db9a5e3a090bb7b9e6b2025-08-20T02:01:51ZengSumy State UniversityЖурнал нано- та електронної фізики2077-67722016-03-018101044-101044-5Numerical Investigation of Superslow Diffusion Laws for a Certain Class of Continuous-time Random WalksYu.S. Bystrik0Sumy State University, 2, Rimsky Korsakov St., 40007 Sumy, UkraineUsing the continuous-time random walk theory we investigate the phenomenon of anomalous superslow diffusion for which the variance of the particle position increases slowly than any positive power of time. This type of diffusion emerges in the case when the probability densities of the waiting times between the successive jumps characterized by the superheavy tails with infinite moments of any fractional order. We propose a numerical method to study the behavior of the diffusion laws and show that our numerical results are in very good agreement with the theoretical predictions.http://jnep.sumdu.edu.ua/download/numbers/2016/1/articles/jnep_2016_V8_01044.pdfAnomalous diffusionContinuous-time random walksSuperheavy-tailed probability densitie
spellingShingle Yu.S. Bystrik
Numerical Investigation of Superslow Diffusion Laws for a Certain Class of Continuous-time Random Walks
Журнал нано- та електронної фізики
Anomalous diffusion
Continuous-time random walks
Superheavy-tailed probability densitie
title Numerical Investigation of Superslow Diffusion Laws for a Certain Class of Continuous-time Random Walks
title_full Numerical Investigation of Superslow Diffusion Laws for a Certain Class of Continuous-time Random Walks
title_fullStr Numerical Investigation of Superslow Diffusion Laws for a Certain Class of Continuous-time Random Walks
title_full_unstemmed Numerical Investigation of Superslow Diffusion Laws for a Certain Class of Continuous-time Random Walks
title_short Numerical Investigation of Superslow Diffusion Laws for a Certain Class of Continuous-time Random Walks
title_sort numerical investigation of superslow diffusion laws for a certain class of continuous time random walks
topic Anomalous diffusion
Continuous-time random walks
Superheavy-tailed probability densitie
url http://jnep.sumdu.edu.ua/download/numbers/2016/1/articles/jnep_2016_V8_01044.pdf
work_keys_str_mv AT yusbystrik numericalinvestigationofsuperslowdiffusionlawsforacertainclassofcontinuoustimerandomwalks