On the Regular Integral Solutions of a Generalized Bessel Differential Equation
The original Bessel differential equation that describes, among many others, cylindrical acoustic or vortical waves, is a particular case of zero degree of the generalized Bessel differential equation that describes coupled acoustic-vortical waves. The solutions of the generalized Bessel differentia...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2018/8919516 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The original Bessel differential equation that describes, among many others, cylindrical acoustic or vortical waves, is a particular case of zero degree of the generalized Bessel differential equation that describes coupled acoustic-vortical waves. The solutions of the generalized Bessel differential equation are obtained for all possible combinations of the two complex parameters, order and degree, and finite complex variable, as Frobenius-Fuchs series around the regular singularity at the origin; the series converge in the whole complex plane of the variable, except for the point-at-infinity, that is, the only other singularity of the differential equation. The regular integral solutions of the first and second kinds lead, respectively, to the generalized Bessel and Neumann functions; these reduce to the original Bessel and Neumann functions for zero degree and have alternative expressions for nonzero degree. |
---|---|
ISSN: | 1687-9120 1687-9139 |