Neuronal Mesh Reconstruction from Image Stacks Using Implicit Neural Representations

Reconstructing neuronal morphology from microscopy image stacks is essential for understanding brain function and behavior. While existing methods are capable of tracking neuronal tree structures and creating membrane surface meshes, they often lack seamless processing pipelines and suffer from stit...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoqiang Zhu, Yanhua Zhao, Lihua You
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/8/1276
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reconstructing neuronal morphology from microscopy image stacks is essential for understanding brain function and behavior. While existing methods are capable of tracking neuronal tree structures and creating membrane surface meshes, they often lack seamless processing pipelines and suffer from stitching artifacts and reconstruction inconsistencies. In this study, we propose a new approach utilizing implicit neural representation to directly extract neuronal isosurfaces from raw image stacks by modeling signed distance functions (SDFs) with multi-layer perceptrons (MLPs). Our method accurately reconstructs the tubular, tree-like topology of neurons in complex spatial configurations, yielding highly precise neuronal membrane surface meshes. Extensive quantitative and qualitative evaluations across multiple datasets demonstrate the superior reliability of our approach compared to existing methods. The proposed method achieves a volumetric reconstruction accuracy of up to 98.2% and a volumetric IoU of 0.90.
ISSN:2227-7390