Quantum-enhanced distributed phase sensing with a truncated SU(1,1) interferometer

In recent years, distributed quantum sensing has gained interest for a range of applications requiring networks of sensors, from global-scale clock synchronization to high energy physics. In particular, a network of entangled sensors can improve not only the sensitivity beyond the shot noise limit,...

Full description

Saved in:
Bibliographic Details
Main Authors: Seongjin Hong, Matthew A. Feldman, Claire E. Marvinney, Donghwa Lee, Changhyoup Lee, Michael T. Febbraro, Alberto M. Marino, Raphael C. Pooser
Format: Article
Language:English
Published: American Physical Society 2025-06-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.7.023231
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, distributed quantum sensing has gained interest for a range of applications requiring networks of sensors, from global-scale clock synchronization to high energy physics. In particular, a network of entangled sensors can improve not only the sensitivity beyond the shot noise limit, but also enable a Heisenberg scaling with the number of sensors. Here, using bright entangled twin beams, we theoretically and experimentally demonstrate the detection of a linear combination of two distributed phases beyond the shot noise limit with a truncated SU(1,1) interferometer. Specifically, we show a quantum noise reduction of 1.7±0.3 dB below what is possible with the corresponding classical configuration. Additionally, we theoretically extend the use of a truncated SU(1,1) interferometer to a multi-phase-distributed sensing scheme that leverages entanglement as a resource to achieve a quantum improvement in the scaling with the number of sensors in the network. Our results pave the way for developing quantum-enhanced sensor networks that can achieve an entanglement-enhanced sensitivity.
ISSN:2643-1564