Reduced contribution of sulfur to the mass extinction associated with the Chicxulub impact event

Abstract The Chicxulub asteroid impact event at the Cretaceous-Paleogene (K-Pg) boundary ~66 Myr ago is widely considered responsible for the mass extinction event leading to the demise of the non-avian dinosaurs. Short-term cooling due to massive release of climate-active agents is hypothesized to...

Full description

Saved in:
Bibliographic Details
Main Authors: Katerina Rodiouchkina, Steven Goderis, Cem Berk Senel, Pim Kaskes, Özgür Karatekin, Michael Ernst Böttcher, Ilia Rodushkin, Johan Vellekoop, Philippe Claeys, Frank Vanhaecke
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55145-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The Chicxulub asteroid impact event at the Cretaceous-Paleogene (K-Pg) boundary ~66 Myr ago is widely considered responsible for the mass extinction event leading to the demise of the non-avian dinosaurs. Short-term cooling due to massive release of climate-active agents is hypothesized to have been crucial, with S-bearing gases originating from the target rock vaporization considered an important driving force. Yet, the magnitude of the S release remains poorly constrained. Here we empirically estimate the amount of impact-released S relying on the concentration of S and its isotopic composition within the impact structure and a set of terrestrial K-Pg boundary ejecta sites. The average value of 67 ± 39 Gt obtained is ~5-fold lower than previous numerical estimates. The lower mass of S-released may indicate a less prominent role for S emission leading to a milder impact winter with key implications for species survival during the first years following the impact.
ISSN:2041-1723