Some Existence, Uniqueness, and Stability Results for a Class of <i>ϑ</i>-Fractional Stochastic Integral Equations
This paper focuses on the existence and uniqueness of solutions for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϑ</mi></semantics></math></inline-formula>-fractional stochastic in...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/9/1/7 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper focuses on the existence and uniqueness of solutions for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϑ</mi></semantics></math></inline-formula>-fractional stochastic integral equations (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϑ</mi></semantics></math></inline-formula>-FSIEs) using the Banach fixed point theorem (BFPT). We explore the Ulam–Hyers stability (UHS) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϑ</mi></semantics></math></inline-formula>-FSIEs through traditional methods of stochastic calculus and the BFPT. Moreover, the continuous dependence of solutions on initial conditions is proven. Additionally, we provide three examples to demonstrate our findings. |
---|---|
ISSN: | 2504-3110 |