Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images

Purpose. Although optical coherence tomography (OCT) is essential for ophthalmologists, reading of findings requires expertise. The purpose of this study is to test deep learning with image augmentation for automated detection of chorioretinal diseases. Methods. A retina specialist diagnosed 1,200 O...

Full description

Saved in:
Bibliographic Details
Main Authors: Soichiro Kuwayama, Yuji Ayatsuka, Daisuke Yanagisono, Takaki Uta, Hideaki Usui, Aki Kato, Noriaki Takase, Yuichiro Ogura, Tsutomu Yasukawa
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Journal of Ophthalmology
Online Access:http://dx.doi.org/10.1155/2019/6319581
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose. Although optical coherence tomography (OCT) is essential for ophthalmologists, reading of findings requires expertise. The purpose of this study is to test deep learning with image augmentation for automated detection of chorioretinal diseases. Methods. A retina specialist diagnosed 1,200 OCT images. The diagnoses involved normal eyes (n=570) and those with wet age-related macular degeneration (AMD) (n=136), diabetic retinopathy (DR) (n=104), epiretinal membranes (ERMs) (n=90), and another 19 diseases. Among them, 1,100 images were used for deep learning training, augmented to 59,400 by horizontal flipping, rotation, and translation. The remaining 100 images were used to evaluate the trained convolutional neural network (CNN) model. Results. Automated disease detection showed that the first candidate disease corresponded to the doctor’s decision in 83 (83%) images and the second candidate disease in seven (7%) images. The precision and recall of the CNN model were 0.85 and 0.97 for normal eyes, 1.00 and 0.77 for wet AMD, 0.78 and 1.00 for DR, and 0.75 and 0.75 for ERMs, respectively. Some of rare diseases such as Vogt–Koyanagi–Harada disease were correctly detected by image augmentation in the CNN training. Conclusion. Automated detection of macular diseases from OCT images might be feasible using the CNN model. Image augmentation might be effective to compensate for a small image number for training.
ISSN:2090-004X
2090-0058