A New Multilevel Inverter Topology for Grid-Connected Photovoltaic Systems

The demand for clean and sustainable energy has spurred research in all forms of renewable energy sources, including solar energy from photovoltaic systems. Grid-connected photovoltaic systems (GCPS) provide an effective solution to integrate solar energy into the existing grid. A key component of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Bilal Satti, Ammar Hasan, Mian Ilyas Ahmad
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2018/9704346
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The demand for clean and sustainable energy has spurred research in all forms of renewable energy sources, including solar energy from photovoltaic systems. Grid-connected photovoltaic systems (GCPS) provide an effective solution to integrate solar energy into the existing grid. A key component of the GCPS is the inverter. The inverter can have a significant impact on the overall performance of the GCPS, including maximum power point (MPP) tracking, total harmonic distortion (THD), and efficiency. Multilevel inverters are one of the most promising classes of converters that offer a low THD. In this paper, we propose a new multilevel inverter topology with the motivation to improve all the three aforementioned aspects of performance. The proposed topology is controlled through direct model predictive control (DMPC), which is state of the art in control techniques. We compare the performance of the proposed topology with the topologies reported in literature. The proposed topology offers one of the best efficiency, MPP tracking, and voltage THD.
ISSN:1110-662X
1687-529X