Multi-Agent System for Emulating Personality Traits Using Deep Reinforcement Learning
Conventional personality assessment methods depend on subjective input, while game-based AI predictive methods offer a dynamic and objective framework. However, training these models requires large and labeled datasets, which are challenging to obtain from real players with diverse personality trait...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/14/24/12068 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Conventional personality assessment methods depend on subjective input, while game-based AI predictive methods offer a dynamic and objective framework. However, training these models requires large and labeled datasets, which are challenging to obtain from real players with diverse personality traits. In this paper, we propose a multi-agent system using Deep Reinforcement Learning in a game environment to generate the necessary labeled data. Each agent is trained with custom reward functions based on the HiDAC system that encourages trait-aligned behaviors to emulate specific personality traits based on the OCEAN personality trait model. The Multi-Agent Posthumous Credit Assignment (MA-POCA) algorithm facilitates continuous learning, allowing agents to emulate behaviors through self-play. The resulting gameplay data provide diverse, high-quality samples. This approach allows for robust individual and team assessments, as agent interactions reveal the impact of personality traits on team dynamics and performance. Ultimately, this methodology provides a scalable, unbiased methodology for human personality evaluation in various settings, establishing new standards for data-driven assessment methods. |
|---|---|
| ISSN: | 2076-3417 |