Navigation-grade interferometric air-core antiresonant fibre optic gyroscope with enhanced thermal stability

Abstract We present a groundbreaking navigation-grade interferometric air-core fibre optic gyroscope (IFOG) using a quadrupolar-wound coil of four-tube truncated double nested antiresonant nodeless fibre (tDNANF). This state-of-the-art tDNANF simultaneously achieves low loss, low bend loss, single-s...

Full description

Saved in:
Bibliographic Details
Main Authors: Maochun Li, Yizhi Sun, Shoufei Gao, Xiaoming Zhao, Fei Hui, Wei Luo, Qingbo Hu, Hao Chen, Helin Wu, Yingying Wang, Miao Yan, Wei Ding
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-58381-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract We present a groundbreaking navigation-grade interferometric air-core fibre optic gyroscope (IFOG) using a quadrupolar-wound coil of four-tube truncated double nested antiresonant nodeless fibre (tDNANF). This state-of-the-art tDNANF simultaneously achieves low loss, low bend loss, single-spatial-mode operation, and exceptional linear polarization purity over a broad wavelength range. Our 469 m tDNANF coil demonstrated a polarization extinction ratio (PER) of ~20 dB when illuminated by an amplified spontaneous emission (ASE) source spanning 1525-1565 nm. Under these conditions, the gyro archives an angular random walk (ARW) of 0.00383 deg h−1/2 and a bias instability (BI) drift of 0.0017 deg h−1, marking the first instance of navigation-grade performance in air-core FOGs. Additionally, we validated the low thermal sensitivity of air-core FOGs, with reductions of 9.24/10.68/6.82 compared to that of conventional polarization-maintaining solid-core FOGs of the same size across various temperature ranges. These results represent a significant step towards long-standing promise of high-precision inertial navigation applications with superior environmental adaptability.
ISSN:2041-1723