Polarization Switching in Ferroelectric Thin Films Undergoing First-Order Phase Transitions

The main switching properties in ferroelectrics undergoing first-order phase transitions are simulated within the framework of the extended Ishibashi dipole-lattice model including the dipole-dipole interaction in a two-dimensional case for ferroelectric nanoscale objects. The peculiarities of the t...

Full description

Saved in:
Bibliographic Details
Main Authors: L. A. Bakaleinikov, A. Gordon
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Advances in Condensed Matter Physics
Online Access:http://dx.doi.org/10.1155/2010/387853
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main switching properties in ferroelectrics undergoing first-order phase transitions are simulated within the framework of the extended Ishibashi dipole-lattice model including the dipole-dipole interaction in a two-dimensional case for ferroelectric nanoscale objects. The peculiarities of the temperature dependence of the switching rate and the pyroelectric coefficient are discussed in the range of coexistence of the metastable states. The used coefficients of the long-range and short-range interactions between the dipoles are taken from the dielectric and structure measurements in BaTiO3.
ISSN:1687-8108
1687-8124