Experimental and Numerical Study Determining the Warpage Phenomenon of Thin-Wall Injection Molding
This study emphasizes the warpage phenomenon of thin-walled parts using acrylonitrile-butadiene styrene (ABS) plus polycarbonate (PC) plastics for optimal processing by thin-wall injection molding. The authors first employed the Moldflow software to analyze the runner’s balance on multicavities for...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Advances in Polymer Technology |
Online Access: | http://dx.doi.org/10.1155/2020/2914801 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study emphasizes the warpage phenomenon of thin-walled parts using acrylonitrile-butadiene styrene (ABS) plus polycarbonate (PC) plastics for optimal processing by thin-wall injection molding. The authors first employed the Moldflow software to analyze the runner’s balance on multicavities for thin-walled parts and to simulate the warpage of thin-walled parts with thin-wall injection molding. Then, this study used those data to fabricate a real mold by computer numerical control machining. For this study, the authors fabricated thin-walled parts and measured their warpage using various process parameters (injection speed, injection pressure, mold temperature, packing time, and melt temperature) with thin-walled injection molding. Finally, the authors found that the most important processing parameter was the packing time for warpage phenomenon of thin-walled parts by thin-wall injection molding. |
---|---|
ISSN: | 0730-6679 1098-2329 |