Foundation of Interval-Valued Intuitionistic Fuzzy Limit and Differential Theory and an Application to Continuous Data

The intuitionistic fuzzy calculus (IFC), based on the basic operational laws of intuitionistic fuzzy numbers (IFNs), has been put forward. However, the interval-valued IFC (IVIFC), based on the basic operational laws of interval-valued IFNs (IVIFNs), is only in the original stage. To further develop...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhenghai Ai, Xiaoqin Shu, Zeshui Xu
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2019/3947261
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intuitionistic fuzzy calculus (IFC), based on the basic operational laws of intuitionistic fuzzy numbers (IFNs), has been put forward. However, the interval-valued IFC (IVIFC), based on the basic operational laws of interval-valued IFNs (IVIFNs), is only in the original stage. To further develop the theory of the IVIFC and make it be rigorous, the primary task is to systematically investigate the characteristics of the limits and differentials, which is a foundation of the IVIFC. Moreover, there is quite a lot of literature on IVIFNs; however, the scholars did not reveal the relationships between IFNs and the IVIFNs. To do that, we first investigate the limit of interval-valued intuitionistic fuzzy sequences, and then, we focus on investigating the limit, the continuity, and the differential of IVIFFs in detail and reveal their relationships. After that, due to the fact that the IFC and the IVIFC are based on the basic operational laws of IFNs and IVIFNs, respectively, we reveal the relationships between the IFNs and the IVIFNs via some homomorphic mappings. Finally, a case study about continuous data of IVIFNs is provided to illustrate the advantages of continuous data.
ISSN:1076-2787
1099-0526