Nonequilibrium Quantum Systems: Divergence between Global and Local Descriptions

Even photosynthesis—the most basic natural phenomenon underlying life on Earth—involves the nontrivial processing of excitations at the pico- and femtosecond scales during light-harvesting. The desire to understand such natural phenomena, as well as interpret the output from ultrafast experimental p...

Full description

Saved in:
Bibliographic Details
Main Authors: Pedro D. Manrique, Ferney Rodríguez, Luis Quiroga, Neil F. Johnson
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in Condensed Matter Physics
Online Access:http://dx.doi.org/10.1155/2015/615727
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Even photosynthesis—the most basic natural phenomenon underlying life on Earth—involves the nontrivial processing of excitations at the pico- and femtosecond scales during light-harvesting. The desire to understand such natural phenomena, as well as interpret the output from ultrafast experimental probes, creates an urgent need for accurate quantitative theories of open quantum systems. However it is unclear how best to generalize the well-established assumptions of an isolated system, particularly under nonequilibrium conditions. Here we compare two popular approaches: a description in terms of a direct product of the states of each individual system (i.e., a local approach) versus the use of new states resulting from diagonalizing the whole Hamiltonian (i.e., a global approach). The main difference lies in finding suitable operators to derive the Lindbladian and hence the master equation. We show that their equivalence fails when the system is open, in particular under the experimentally ubiquitous condition of a temperature gradient. By solving for the steady state populations and calculating the heat flux as a test observable, we uncover stark differences between the formulations. This divergence highlights the need to establish rigorous ranges of applicability for such methods in modeling nanoscale transfer phenomena—including during the light-harvesting process in photosynthesis.
ISSN:1687-8108
1687-8124