Reconstructing Classical Algebras via Ternary Operations
Although algebraic structures are frequently analyzed using unary and binary operations, they can also be effectively defined and unified using ternary operations. In this context, we introduce structures that contain two constants and a ternary operation. We demonstrate that these structures are is...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/9/1407 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Although algebraic structures are frequently analyzed using unary and binary operations, they can also be effectively defined and unified using ternary operations. In this context, we introduce structures that contain two constants and a ternary operation. We demonstrate that these structures are isomorphic to various significant algebraic systems, including Boolean algebras, de Morgan algebras, MV-algebras, and (near-)rings of characteristic two. Our work highlights the versatility of ternary operations in describing and connecting diverse algebraic structures. |
|---|---|
| ISSN: | 2227-7390 |