A Note on Directional Wavelet Transform: Distributional Boundary Values and Analytic Wavefront Sets
By using a particular class of directional wavelets (namely, the conical wavelets, which are wavelets strictly supported in a proper convex cone in the k-space of frequencies), in this paper, it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic function...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2012/758694 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By using a particular class of directional wavelets (namely, the conical wavelets, which are wavelets strictly supported in a proper convex cone in the k-space of frequencies), in this paper, it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic functions arising from the complexification of the translational parameter of the wavelet transform. Moreover, we show that for a given distribution f∈𝒮′(ℝn), the continuous wavelet transform of f with respect to a conical wavelet is defined in such a way that the directional wavelet transform of f yields a function on phase space whose high-frequency singularities are precisely the elements in the analytic wavefront set of f. |
---|---|
ISSN: | 0161-1712 1687-0425 |