Visible-mid infrared ultra-broadband and wide-angle metamaterial perfect absorber based on cermet films with nano-cone structure
Metamaterial absorbers over a broadband spectrum with high absorption, good angular tolerance, and easy configurations have essential importance for optical and optoelectronic devices. In this study, a hybrid metamaterial absorber comprising multilayered cermet thin films (multi-cermet) with tapered...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2023-03-01
|
Series: | Nanophotonics |
Subjects: | |
Online Access: | https://doi.org/10.1515/nanoph-2023-0021 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metamaterial absorbers over a broadband spectrum with high absorption, good angular tolerance, and easy configurations have essential importance for optical and optoelectronic devices. In this study, a hybrid metamaterial absorber comprising multilayered cermet thin films (multi-cermet) with tapered structure is designed and experimentally demonstrated. Combining optical interference of multi-cermet films and optical field localization of nano-cone structures, the average absorbance of both simulation and measurement are more than 98% in an ultrabroad bandwidth (300–3000 nm), and the proposed absorber shows a good angular tolerance as well. The composite process of two easy-operated and efficient methods, colloidal lithography, and magnetron sputtering, is employed for large-area fabrication. In addition, owing to flexible polyimide substrate, the proposed absorber also shows good bending and heating resistance, which reflects its potential in engineering application. |
---|---|
ISSN: | 2192-8614 |