Nonstationary Fronts in the Singularly Perturbed Power-Society Model

The theory of contrasting structures in singularly perturbed boundary problems for nonlinear parabolic partial differential equations is applied to the research of formation of steady state distributions of power within the nonlinear “power-society” model. The interpretations of the solutions to the...

Full description

Saved in:
Bibliographic Details
Main Authors: M. G. Dmitriev, A. A. Pavlov, A. P. Petrov
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/172654
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552486564528128
author M. G. Dmitriev
A. A. Pavlov
A. P. Petrov
author_facet M. G. Dmitriev
A. A. Pavlov
A. P. Petrov
author_sort M. G. Dmitriev
collection DOAJ
description The theory of contrasting structures in singularly perturbed boundary problems for nonlinear parabolic partial differential equations is applied to the research of formation of steady state distributions of power within the nonlinear “power-society” model. The interpretations of the solutions to the equation are presented in terms of applied model. The possibility theorem for the problem of getting the solution having some preassigned properties by means of parametric control is proved.
format Article
id doaj-art-2a86d4f8d7c3452ea9098739e62c4aed
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-2a86d4f8d7c3452ea9098739e62c4aed2025-02-03T05:58:27ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/172654172654Nonstationary Fronts in the Singularly Perturbed Power-Society ModelM. G. Dmitriev0A. A. Pavlov1A. P. Petrov2Institute of System Analysis of RAS, Higher School of Economics, Moscow 101000, RussiaRussian State Social University, Moscow 129226, RussiaKeldysh Institute of Applied Mathematics RAS, Moscow 125047, RussiaThe theory of contrasting structures in singularly perturbed boundary problems for nonlinear parabolic partial differential equations is applied to the research of formation of steady state distributions of power within the nonlinear “power-society” model. The interpretations of the solutions to the equation are presented in terms of applied model. The possibility theorem for the problem of getting the solution having some preassigned properties by means of parametric control is proved.http://dx.doi.org/10.1155/2013/172654
spellingShingle M. G. Dmitriev
A. A. Pavlov
A. P. Petrov
Nonstationary Fronts in the Singularly Perturbed Power-Society Model
Abstract and Applied Analysis
title Nonstationary Fronts in the Singularly Perturbed Power-Society Model
title_full Nonstationary Fronts in the Singularly Perturbed Power-Society Model
title_fullStr Nonstationary Fronts in the Singularly Perturbed Power-Society Model
title_full_unstemmed Nonstationary Fronts in the Singularly Perturbed Power-Society Model
title_short Nonstationary Fronts in the Singularly Perturbed Power-Society Model
title_sort nonstationary fronts in the singularly perturbed power society model
url http://dx.doi.org/10.1155/2013/172654
work_keys_str_mv AT mgdmitriev nonstationaryfrontsinthesingularlyperturbedpowersocietymodel
AT aapavlov nonstationaryfrontsinthesingularlyperturbedpowersocietymodel
AT appetrov nonstationaryfrontsinthesingularlyperturbedpowersocietymodel