Two New Approximations for Variable-Order Fractional Derivatives

We introduced a parameter σ(t) which was related to α(t); then two numerical schemes for variable-order Caputo fractional derivatives were derived; the second-order numerical approximation to variable-order fractional derivatives α(t)∈(0,1) and 3-α(t)-order approximation for α(t)∈(1,2) are establish...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruilian Du, Zongqi Liang
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2017/1586249
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduced a parameter σ(t) which was related to α(t); then two numerical schemes for variable-order Caputo fractional derivatives were derived; the second-order numerical approximation to variable-order fractional derivatives α(t)∈(0,1) and 3-α(t)-order approximation for α(t)∈(1,2) are established. For the given parameter σ(t), the error estimations of formulas were proven, which were higher than some recently derived schemes. Finally, some numerical examples with exact solutions were studied to demonstrate the theoretical analysis and verify the efficiency of the proposed methods.
ISSN:1026-0226
1607-887X