Optimized UVC-based antifouling system for moored applications
Biofouling, the unwanted accumulation of marine organisms on submerged structures, significantly compromises the quality of scientific data acquisition. A promising approach to mitigate biofouling on marine sensors is the use of UVC-based antifouling systems. However, existing systems often suffer f...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-07-01
|
| Series: | Frontiers in Marine Science |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fmars.2025.1625587/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Biofouling, the unwanted accumulation of marine organisms on submerged structures, significantly compromises the quality of scientific data acquisition. A promising approach to mitigate biofouling on marine sensors is the use of UVC-based antifouling systems. However, existing systems often suffer from low efficiency, leading to high power consumption. This study presents a highly energy-efficient UVC-based antifouling system with a twentyfold increase in energy efficiency compared to previous commercial designs. The system was tested on moored CTDs and fluorometers in the southern Baltic Sea at a depth of 2 meters. Conductivity readings remained within the manufacturer’s specifications for 237 days, demonstrating the effectiveness of the approach in maintaining sensor performance. Based on in-situ measurements in coastal southern Baltic Sea water this study presents a formula to estimate UVC intensity in distances up to 50 cm in order to optimize the settings of UVC-based antifouling systems. |
|---|---|
| ISSN: | 2296-7745 |