Existence and Numerical Simulation of Solutions for Fractional Equations Involving Two Fractional Orders with Nonlocal Boundary Conditions

We study a boundary value problem for fractional equations involving two fractional orders. By means of a fixed point theorem, we establish sufficient conditions for the existence and uniqueness of solutions for the fractional equations. In addition, we describe the dynamic behaviors of the fraction...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing Zhao, Peifen Lu, Yiliang Liu
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2013/268347
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548939742576640
author Jing Zhao
Peifen Lu
Yiliang Liu
author_facet Jing Zhao
Peifen Lu
Yiliang Liu
author_sort Jing Zhao
collection DOAJ
description We study a boundary value problem for fractional equations involving two fractional orders. By means of a fixed point theorem, we establish sufficient conditions for the existence and uniqueness of solutions for the fractional equations. In addition, we describe the dynamic behaviors of the fractional Langevin equation by using the G2 algorithm.
format Article
id doaj-art-2a1a7a6786e645659eca795e62dc8ad6
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-2a1a7a6786e645659eca795e62dc8ad62025-02-03T06:12:38ZengWileyJournal of Applied Mathematics1110-757X1687-00422013-01-01201310.1155/2013/268347268347Existence and Numerical Simulation of Solutions for Fractional Equations Involving Two Fractional Orders with Nonlocal Boundary ConditionsJing Zhao0Peifen Lu1Yiliang Liu2Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis and College of Sciences, Guangxi University for Nationalities, Nanning, Guangxi 530006, ChinaGuangxi Key Laboratory of Hybrid Computation and IC Design Analysis and College of Sciences, Guangxi University for Nationalities, Nanning, Guangxi 530006, ChinaGuangxi Key Laboratory of Hybrid Computation and IC Design Analysis and College of Sciences, Guangxi University for Nationalities, Nanning, Guangxi 530006, ChinaWe study a boundary value problem for fractional equations involving two fractional orders. By means of a fixed point theorem, we establish sufficient conditions for the existence and uniqueness of solutions for the fractional equations. In addition, we describe the dynamic behaviors of the fractional Langevin equation by using the G2 algorithm.http://dx.doi.org/10.1155/2013/268347
spellingShingle Jing Zhao
Peifen Lu
Yiliang Liu
Existence and Numerical Simulation of Solutions for Fractional Equations Involving Two Fractional Orders with Nonlocal Boundary Conditions
Journal of Applied Mathematics
title Existence and Numerical Simulation of Solutions for Fractional Equations Involving Two Fractional Orders with Nonlocal Boundary Conditions
title_full Existence and Numerical Simulation of Solutions for Fractional Equations Involving Two Fractional Orders with Nonlocal Boundary Conditions
title_fullStr Existence and Numerical Simulation of Solutions for Fractional Equations Involving Two Fractional Orders with Nonlocal Boundary Conditions
title_full_unstemmed Existence and Numerical Simulation of Solutions for Fractional Equations Involving Two Fractional Orders with Nonlocal Boundary Conditions
title_short Existence and Numerical Simulation of Solutions for Fractional Equations Involving Two Fractional Orders with Nonlocal Boundary Conditions
title_sort existence and numerical simulation of solutions for fractional equations involving two fractional orders with nonlocal boundary conditions
url http://dx.doi.org/10.1155/2013/268347
work_keys_str_mv AT jingzhao existenceandnumericalsimulationofsolutionsforfractionalequationsinvolvingtwofractionalorderswithnonlocalboundaryconditions
AT peifenlu existenceandnumericalsimulationofsolutionsforfractionalequationsinvolvingtwofractionalorderswithnonlocalboundaryconditions
AT yiliangliu existenceandnumericalsimulationofsolutionsforfractionalequationsinvolvingtwofractionalorderswithnonlocalboundaryconditions