Compensation of Backlash for High Precision Tracking Control of Inverted Pendulum by Drive-Anti Drive Mechanisms
Many actuating and electro-mechanical devices are driven by DC motors. Gear trains are used to amplify the torque in these motors. They are used in a wide variety of automotives, robotics, and automation applications. However, gears are prone to backlash during their operation of amplifying torques...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-09-01
|
| Series: | Engineering Proceedings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-4591/75/1/32 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Many actuating and electro-mechanical devices are driven by DC motors. Gear trains are used to amplify the torque in these motors. They are used in a wide variety of automotives, robotics, and automation applications. However, gears are prone to backlash during their operation of amplifying torques of electromehanical drives. This results in the disengagement of gear teeth when the rotation is reversed. These effects give rise to positional inaccuracies and poor control of the system. This proposed Drive-Anti Drive mechanism is used to track the system’s desired response in the presence of backlash in such cases. The Drive-Anti Drive mechanism consists of two motors rotating in opposite directions. Both the drive and the anti-drive are the DC Machines. The simulation results of the proposed scheme on the tracking control of Inverted Pendulum have been presented. Simulation results depict that the utilization of Drive-Anti Drive system has achieved the target outcome in less than 20 s. However, the target tracking of a system with the utilization of single drives takes 40 s. Setting response of an inverted pendulum is approximately twice as efficient with the utilization of the Drive-Anti Drive mechanism. This approach has been able to effectively track the target in the presence of backlash with the utilization of the Drive-Anti Drive mechanism. |
|---|---|
| ISSN: | 2673-4591 |