Linear Independence of ๐‘ž-Logarithms over the Eisenstein Integers

For fixed complex ๐‘ž with |๐‘ž|>1, the ๐‘ž-logarithm ๐ฟ๐‘ž is the meromorphic continuation of the series โˆ‘๐‘›>0๐‘ง๐‘›/(๐‘ž๐‘›โˆ’1),|๐‘ง|<|๐‘ž|, into the whole complex plane. If ๐พ is an algebraic number field, one may ask if 1,๐ฟ๐‘ž(1),๐ฟ๐‘ž(๐‘) are linearly independent over ๐พ for ๐‘ž,๐‘โˆˆ๐พร— satisfying |๐‘ž|>1,๐‘โ‰ ๐‘ž,๐‘ž2,๐‘ž3,โ€ฆ. I...

Full description

Saved in:
Bibliographic Details
Main Authors: Peter Bundschuh, Keijo Vรครคnรคnen
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2010/839695
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849308016133799936
author Peter Bundschuh
Keijo Vรครคnรคnen
author_facet Peter Bundschuh
Keijo Vรครคnรคnen
author_sort Peter Bundschuh
collection DOAJ
description For fixed complex ๐‘ž with |๐‘ž|>1, the ๐‘ž-logarithm ๐ฟ๐‘ž is the meromorphic continuation of the series โˆ‘๐‘›>0๐‘ง๐‘›/(๐‘ž๐‘›โˆ’1),|๐‘ง|<|๐‘ž|, into the whole complex plane. If ๐พ is an algebraic number field, one may ask if 1,๐ฟ๐‘ž(1),๐ฟ๐‘ž(๐‘) are linearly independent over ๐พ for ๐‘ž,๐‘โˆˆ๐พร— satisfying |๐‘ž|>1,๐‘โ‰ ๐‘ž,๐‘ž2,๐‘ž3,โ€ฆ. In 2004, Tachiya showed that this is true in the Subcase ๐พ=โ„š, ๐‘žโˆˆโ„ค, ๐‘=โˆ’1, and the present authors extended this result to arbitrary integer ๐‘ž from an imaginary quadratic number field ๐พ, and provided a quantitative version. In this paper, the earlier method, in particular its arithmetical part, is further developed to answer the above question in the affirmative if ๐พ is the Eisenstein number field โˆšโ„š(โˆ’3), ๐‘ž an integer from ๐พ, and ๐‘ a primitive third root of unity. Under these conditions, the linear independence holds also for 1,๐ฟ๐‘ž(๐‘),๐ฟ๐‘ž(๐‘โˆ’1), and both results are quantitative.
format Article
id doaj-art-29e21e1698a942639c4cd8968cde9470
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-29e21e1698a942639c4cd8968cde94702025-08-20T03:54:36ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252010-01-01201010.1155/2010/839695839695Linear Independence of ๐‘ž-Logarithms over the Eisenstein IntegersPeter Bundschuh0Keijo Vรครคnรคnen1Mathematisches Institut, Universitรคt zu Kรถln, Weyertal 86-90, 50931 Kรถln, GermanyDepartment of Mathematics, University of Oulu, P.O. Box 3000, 90014 Oulu, FinlandFor fixed complex ๐‘ž with |๐‘ž|>1, the ๐‘ž-logarithm ๐ฟ๐‘ž is the meromorphic continuation of the series โˆ‘๐‘›>0๐‘ง๐‘›/(๐‘ž๐‘›โˆ’1),|๐‘ง|<|๐‘ž|, into the whole complex plane. If ๐พ is an algebraic number field, one may ask if 1,๐ฟ๐‘ž(1),๐ฟ๐‘ž(๐‘) are linearly independent over ๐พ for ๐‘ž,๐‘โˆˆ๐พร— satisfying |๐‘ž|>1,๐‘โ‰ ๐‘ž,๐‘ž2,๐‘ž3,โ€ฆ. In 2004, Tachiya showed that this is true in the Subcase ๐พ=โ„š, ๐‘žโˆˆโ„ค, ๐‘=โˆ’1, and the present authors extended this result to arbitrary integer ๐‘ž from an imaginary quadratic number field ๐พ, and provided a quantitative version. In this paper, the earlier method, in particular its arithmetical part, is further developed to answer the above question in the affirmative if ๐พ is the Eisenstein number field โˆšโ„š(โˆ’3), ๐‘ž an integer from ๐พ, and ๐‘ a primitive third root of unity. Under these conditions, the linear independence holds also for 1,๐ฟ๐‘ž(๐‘),๐ฟ๐‘ž(๐‘โˆ’1), and both results are quantitative.http://dx.doi.org/10.1155/2010/839695
spellingShingle Peter Bundschuh
Keijo Vรครคnรคnen
Linear Independence of ๐‘ž-Logarithms over the Eisenstein Integers
International Journal of Mathematics and Mathematical Sciences
title Linear Independence of ๐‘ž-Logarithms over the Eisenstein Integers
title_full Linear Independence of ๐‘ž-Logarithms over the Eisenstein Integers
title_fullStr Linear Independence of ๐‘ž-Logarithms over the Eisenstein Integers
title_full_unstemmed Linear Independence of ๐‘ž-Logarithms over the Eisenstein Integers
title_short Linear Independence of ๐‘ž-Logarithms over the Eisenstein Integers
title_sort linear independence of ๐‘ž logarithms over the eisenstein integers
url http://dx.doi.org/10.1155/2010/839695
work_keys_str_mv AT peterbundschuh linearindependenceofqlogarithmsovertheeisensteinintegers
AT keijovaananen linearindependenceofqlogarithmsovertheeisensteinintegers